Others
Maths Puzzle
undefined
If 2x = 3y = 6-z, then (1/x + 1/y + 1/z)
is equal to:
Read Solution (Total 3)
-
- Solution:
2x = 6 -z Þ 2 = 6-z/x -------------(i)
3y = 6 -z Þ 3 = 6-z/y -------------(ii)
Multiplying (i)and(ii)
2x3 = 6-z/x x 6-z/y
6 = 6(1-z/x) *6(1-z/y)
1 = (-z/x) +(-z/y)
1= -z(1/x +1/y)
1/-z = 1/x +1/y
1/x + 1/y + 1/z = 0
- 10 years agoHelpfull: Yes(7) No(6)
- 0
2x = 6 -z then 2 = 6-z/x -------------(i)
3y = 6 -z then 3 = 6-z/y -------------(ii)
Multiplying (i)and(ii)
2x3 = 6-z/x x 6-z/y
61 = 6-z/x +-z/y
1 = (-z/x) +(-z/y)
1= -z(1/x +1/y)
1/-z = 1/x +1/y
1/x + 1/y + 1/z = 0 - 10 years agoHelpfull: Yes(4) No(4)
- let 2^x = 3^y = 6^z=k
so , 2 = k^(1/x)
3 = k^(1/y)
6 = k^(-1/z)
since , 2 * 3 = 6
so, 2 * 3 = k ^ (1/x) * k ^ (1/y) = k ^ [ (1/x) + (1/y) ]
also , 6=k ^ ( -1/z )
therefore , k ^ [ (1/x) + (1/y) ]=k ^ ( -1/z )
so [ (1/x) + (1/y) ] = ( -1/z )
==> (1/x) + (1/y) -( -1/z ) = 0
so (1/x) + (1/y) + (1/z ) = 0 ans. - 7 years agoHelpfull: Yes(3) No(0)
Others Other Question