Elitmus
Exam
Numerical Ability
Log and Antilog
What is the value of loge(e(e(e....)1/2)1/2)1/2 ?
A. 0
B. 1/3
C. 1/2
D. 1
Read Solution (Total 5)
-
- Let y=(e(e(e.........)^1/2)^1/2)^1/2)
now squaring both side we get
y^2=e(e(e(e.........)^1/2)^1/2)^1/2)
i.e., y^2=e*y [since y=(e(e(e.........)^1/2)^1/2)^1/2)]
therefore y=e
taking log, log(y)=log(e)=1
So answer is 1 - 10 years agoHelpfull: Yes(25) No(3)
- loge(e(e(e....)1/2)1/2)1/2
(e(e(e....)1/2)1/2)1/2= e^(1/2 + 1/4 +1/8 +….) = e^1
Log(e^1) = log e = 1 - 10 years agoHelpfull: Yes(10) No(2)
- 1,log(y)=log(e)=1
- 10 years agoHelpfull: Yes(1) No(1)
- loge(e(e(e....)1/2)1/2)1/2
(e(e(e....)1/2)1/2)1/2= e^(1/2 + 1/4 +1/8 +….) = e^1
Log(e^1) = log e = 1 - 10 years agoHelpfull: Yes(1) No(0)
- loge(e(e(e....)1/2)1/2)1/2
(e(e(e....)1/2)1/2)1/2= e^(1/2 + 1/4 +1/8 +….) = e^1
Log(e^1) = log e = 1 - 8 years agoHelpfull: Yes(0) No(0)
Elitmus Other Question
If v,w,x,y and z are non - negative integers , each less than 11, then how many distinct combinations of (v,w,x,y.z) satisfy v(11^4)+ w(11^3) + x(11^2) + y(11) + z = 151001
A. 0
B. 1
C. 2
D. 3
7880 ball are there of diameter 2 cm, if these ball are arranged in a form of pile such that top has 1 ball,2nd layer has 3,3rd has 6,4th has 10,5 has 10 and so on.how many levels are there.
Options are
a. 34
b. 33
c. 31
d. 32