Elitmus
Exam
Numerical Ability
Number System
what is the remainder when 30^72^87 is divided by 11.
Read Solution (Total 14)
-
- 30^72^87 mod 11
E[11] = 10
Then
72^87 mod 10
2^87 mod 10
2^1 mod 10 = 2
2^2 mod 10 = 4
2^3 mod 10 = 8
2^4 mod 10 = 6
2^5 mod 10 = 2 again...
Cyclicity is 4... R[2^87/10] ll be 4k+n th value...
87 => 4*21 + 3
2^87 mod 10 = 8
Now the expression is reduced to 30^8 mod 11
8^8 mod 11
2^24 mod 11
E[11] = 10
(2^10)^2 * 2^4 mod 11
1 * 16 mod 11
5 mod 11
Ans : 5 - 10 years agoHelpfull: Yes(21) No(7)
- ANSWER will be definitely 7
30^72^87 mod 11
=(-3)^72^87 mod 11
=(9)^36^87 mod 11
=(-2)^36^87 mod 11
=16^9^87 mod 11
=5^9^87 mod 11
=(5^3*5^3*5^3)^87 mod 11
=(4*4*4)^87 mod 11
=(64)^87 mod 11
=(-2)^87 mod 11
=(-2)*(-2)*(-2)^85 mod 11
=4*(-2)^5^17 mod 11
=4*(32)^17 mod 11
=4*(-1)^17 mod 11
=4*(-1)mod 11
=(-4)mod 11
=7 - 10 years agoHelpfull: Yes(9) No(5)
- 30^72^87=30^72*30^72*30^72*30^72*30^72*.........87 times.
first of all we have to find out the reminder for 30^72/11
euler number of 11 is 10.
rem(30^70/11)=1
remaining 30*30/11=8*8/11=9
so....
9*9*9*9*9*.....87times.
==>we have to finout the reminder of 9^87/11
rem(9^80/11)=1
remaining 9^7/11=81*81*81*9/11=4*4*4*9/11=81/11=4 - 10 years agoHelpfull: Yes(8) No(2)
- rem = 5
72^87 unit digit is 8
so
30^8/11
(-3)^8/11
81*81/11
4*4/11
16/11
=5
- 10 years agoHelpfull: Yes(5) No(5)
- answer will be 7
30^72^87/11
8^6^10/11
4^10/11 - 10 years agoHelpfull: Yes(2) No(2)
- answer is 4
- 10 years agoHelpfull: Yes(2) No(0)
- As φ(11) = 10
=> 3010k = 1mod11
So 7287 is to be written in the form of 10k + a.
Now unit digit of 7287 = 10k + 8
=> 3072^87 = 30(10k + 8) = 3010k *308=308mod11 = (-3)8mod11 [33-3=30. So (-3)8 ]
= 33mod11 [ 35 = 1mod11]
= 27mod11 = 5mod11.
ans is 5 - 10 years agoHelpfull: Yes(1) No(0)
- Fermat little theorem says, (a^(p−1))/p remainder is 1.
ie., 30^10 or 8^10when divided by 11 remainder is 1.
The unit digit of 72^87 is 8 (using cyclicity of unit digits)
So 72^87 = 10K + 8
(30^(10K+8))/11=(30^10)^K.30^8/11=1k*30^8/11
8^8/11=2^24/11=(2^5)^4*2^4/11=16/11=5 - 9 years agoHelpfull: Yes(1) No(0)
- Answer is 1
- 10 years agoHelpfull: Yes(0) No(3)
- remainder is 1
- 10 years agoHelpfull: Yes(0) No(0)
- (30^72)^87%11=30^6264%11;
=(3*11-3)^6264%11
=3^6264%11; (since power is even so by formula (a*x-1)^n%a=1 if n is even)
=3^4 * 3^6360%11
=(11*7+4)%11 * (3^5)^1272%11
=4%11 * 243^1272%11
=4%11 * (11*22+1)1272%11
=4 - 9 years agoHelpfull: Yes(0) No(0)
- https://www.wolframalpha.com/input/?i=%2850%5E56%5E52+%29mod+11
check here... - 9 years agoHelpfull: Yes(0) No(0)
- Ans : 5
remainder should be 5 - 9 years agoHelpfull: Yes(0) No(0)
- we can solve this easily using Euler's Theorem
x^e = x^(emod phi(n) )(mod n)
where ,
phi(n) = Euler Totient Function
if n can be prime factorised as follows:
n = p1^k1 * p2^k2 * ........ * pn^kn, where p1,p2,,,,pn are prime factors of n
then
phi(n) = n *(1-1/p1)*(1-1/p2)*.......*(1-1/pn)
if n is already a prime number then
phi(n) = n-1
we will use the above knowledge to solve 30^72^87 mod(11)
now we will go step wise
= 30^72^87 mod(11)
so we get 30^k (mod 11) where k =72^87 mod(phi(11))
now k = 72^87 mod(10) as 11 is prme so phi(11) =10
k =2^87 mod(10)
which can be again broken down to k = 2^k1 , where k1 = 87 mod(phi(10))
so prime factors of 10 = 2 ,5
phi(10)=10 *(1-1/2)*(1-1/5)
= 4
therfore k1 =87mod4
k1 =3
k =2^k1mod(10)
= 2^3mod(10)
k=8
Now 30^kmod(11)
=(30mod(11))^8 mod(11)
=8^8mod(11)
= 64mod(11) * 64mod(11)*64mod(11) mod(11)
=9 * 9*9*9 mod(11)
=6561mod(11)
=5
so remainder = 5
- 8 years agoHelpfull: Yes(0) No(0)
Elitmus Other Question