A website
Maths Puzzle
Category
Find the sum: √(1 + 1/12 + 1/22) + √(1 + 1/22 + 1/32) + ..... + √(1 + 1/20072 + 1/20082)
a. 2008 - 1/2008
b. 2007 - 1/2007
c. 2007 - 1/2008
d. 2008 - 1/2007
Read Solution (Total 2)
-
- We can calculate it by the formula of arithmetic progression that is
S=N/2[2a+(N-1)d].Therefore the correct answer is(a). - 10 years agoHelpfull: Yes(0) No(1)
- Take the first term:
√(1 + 1/12 + 1/22)
= √(1 + 1 + 1/4)
= √(9/4) = 3/2 =
2 - 1/2
Take the first two terms:
√(1 + 1/12 + 1/22) + √(1 + 1/22 + 1/32)
= 3/2 + √(1 + 1/4 + 1/9)
= 3/2 + √(49/36)
= 3/2 + 7/6
= 8/3
3 - 1/3
Similarly:
√(1 + 1/12 + 1/22) + √(1 + 1/22 + 1/32) + ..... + √(1 + 1/20072 + 1/20082)
= 2008 - 1/2008
So option (a) is correct - 8 years agoHelpfull: Yes(0) No(1)
A website Other Question