Elitmus
Exam
Numerical Ability
Number System
What is the Value of log (e(e(e(---------)^1/2)^1/2)^1/2)^1/2 ?????
Here log is base e.
Read Solution (Total 5)
-
- Let z=(e(e(e.........)^1/2)^1/2)^1/2)
now squaring both side we get
z^2=e(e(e(e.........)^1/2)^1/2)^1/2)
i.e., z^2=e*z [since z=(e(e(e.........)^1/2)^1/2)^1/2)]
therefore z=e
taking log, log(z)=log(e)=1(asz=e^log(e)=1 & base is e)
So answer is 1 - 10 years agoHelpfull: Yes(22) No(2)
- ans is 1..........
log(e)^1/2+1/4+1/8...
log(e)^1
=1 - 10 years agoHelpfull: Yes(2) No(0)
- ans 1 but equation is
e^y2=ey for y=1 is satisfy
- 10 years agoHelpfull: Yes(0) No(4)
- suppose y=log(e(e(e.........)^1/2)^1/2)^1/2)^1/2
then y=1/2(log(e(e(e.........)^1/2)^1/2)^1/2)
y=1/2(y)
2y=y
2y-y=0
y=0
so the result is 0. - 10 years agoHelpfull: Yes(0) No(2)
- since :
log e base e =1;
let z=log(e(e(e(...)^1/2)^1/2)^1/2
z^2=loge(e(e..)^1/2)^1/2
=1/2+ 1/4+1/8.....up to infinity
now this is a GP series
so, sum=1/2/(1-1/2)=1
z^2=1
z=+1 or -1; - 10 years agoHelpfull: Yes(0) No(0)
Elitmus Other Question