Elitmus
Exam
Logical Reasoning
log(e(e(e(e(e........)1/3)1/3)1/3)1/3)1/3)
find the solution
Read Solution (Total 4)
-
- G.P. series
ans-1/2 - 10 years agoHelpfull: Yes(8) No(1)
- Let z = (e(e(e...)^1/3)^1/3)^1/3)
Now cubing both sides:-
z^3 = e * (e(e...)^1/3)1/3
or, z^3 = e * z
or, z^3 - ez = 0
or, z(z^2-e)=0
Therefore either z=0 or z = e^1/2
Putting z=e^1/2 :-
log z base e => log e^1/2 base e => 1/2 *log e base e=> 1/2 (ANS) - 10 years agoHelpfull: Yes(6) No(0)
- it will form a G.P. (1/3)+(1/9)+(1/27)...
so sum=(1/3)/(1 - 1/3)=1/2
loge^1/2=1/2.
- 10 years agoHelpfull: Yes(3) No(1)
- Let log(e(e(e(e(e(......)1/3)1/3)1/3)1/3)1/3)1/3=X
Base is e.So 1/3[ln e+ ln(e(e(e(e(......)1/3)1/3)1/3)1/3)1/3)]=X
1/3[1+X]=x
3X=X+1
2X=1
X=1/2,ANS - 10 years agoHelpfull: Yes(3) No(0)
Elitmus Other Question