TCS
Company
Numerical Ability
Arithmetic
(753 x 753 + 247 x 247 - 753 x 247)/ = ?
(753 x 753 x 753 + 247 x 247 x 247)
Read Solution (Total 16)
-
- if x=753, y=247
then (x^2+y^2-xy)/(x^3+y^3) = 1/(x+y) = 1/1000 = .001 - 10 years agoHelpfull: Yes(21) No(0)
- a^2-ab+b^2a^3+b^3=1/a+b=1/753+247=1/1000
- 10 years agoHelpfull: Yes(3) No(1)
- ans=1000 a^3+b^3=(a+b)(a^2+b^2-ab)
- 10 years agoHelpfull: Yes(2) No(1)
- let,x=753 and y=247 then we get
=(x^2+y^2-xy)/(x^3+y^3)
=1/(x+y) //we know;x^3+y^3=(x+y)*(x^2-xy+y^3)
=1/(753+247)=1/1000
=0.001
- 10 years agoHelpfull: Yes(2) No(0)
- Given problem a^2+b^2-ab/a^3+b^3= 1/a+b =1/1000= 0.001
- 10 years agoHelpfull: Yes(1) No(0)
- sorry it should be in the form of 1/a+b
a=753
b=247
1/1000=.001 Ans - 10 years agoHelpfull: Yes(1) No(0)
- (753*753+247*247-753*247)/(753*753*753+247*247*247)
here 753=a;247=b
so,
(a^2+b^2-ab)/(a^3+b^3)=1/(a+b) [a^3+b^3=(a^2+b^2-a*b)(a+b)]
=1/1000 ans..
- 10 years agoHelpfull: Yes(0) No(0)
- simple 753-247=506 Ans
- 10 years agoHelpfull: Yes(0) No(1)
- a^2+b^2-ab/a^3+b^3= 1/a+b =1/1000= 0.001
- 10 years agoHelpfull: Yes(0) No(0)
- let 753=a 247=b then from above question we get a^2+b^2-ab/a^3+b^3
hen we get the solution as a^2+b^2-ab/a+b(a^2+b^2-ab)=1/a+b=1/753+247=1/1000 - 10 years agoHelpfull: Yes(0) No(0)
- a^3+b^3=(a+b)(a^2+b^2-ab)
so ans will be 1/1000 - 10 years agoHelpfull: Yes(0) No(0)
- a^3+b^3 =(a+b)(a^2-ab+b^2)
ans: 753+247=1000 - 10 years agoHelpfull: Yes(0) No(0)
- (a^3)+(b^3)=(a+b)(a^2-a*b+b^2)
= 1/(753+247)
=1/1000 - 10 years agoHelpfull: Yes(0) No(0)
- formula (a^2-ab+b^2)/(a^3+b^3)=1/(a+b)
so here a=753,b=247
ans=1/(753+247)=0.001
- 10 years agoHelpfull: Yes(0) No(0)
- 1/1000=0.001
a^3+b^3=(a+b)(a^2+b^2-ab);
implies: (753^2+247^2-753*247)/(753^3+247^3)=1/(a+b)=1/1000 - 10 years agoHelpfull: Yes(0) No(0)
- if a=753 , b=247 then the question is in the form
(a^2+b^2-ab)/a^3+b^3
we can write a^3+b^3 as (a+b)(a^2+b^2-ab)
which gives us 1/(a+b) ,=1/1000 - 5 years agoHelpfull: Yes(0) No(0)
TCS Other Question