TCS
Company
Category
last two digit of 123^(!123)
Read Solution (Total 4)
-
- If gcd(a,M) == 1 then
a^ phi(M) % M = 1
lets us consider M = 100
phi(100) = 40
123^40 % 100 = 1
123! is multiple of 40.
So 123^(123!) = 1
- 10 years agoHelpfull: Yes(0) No(2)
- 01 is the answer
last 2 digit of 23^1 =23
last 2 digit of 23^2 =29
last 2 digit of 23^3 =67
last 2 digit of 23^1 =23
last 2 digit of 23^4 =41
.
.
.
last 2 digit of 23^20 =01
last 2 digit of 23^21 =23
.
.
so 123! is multiple of 20
therefore last 2 digit of 23^(123!) = 01
- 10 years agoHelpfull: Yes(0) No(0)
- 123^4*even no!
for last two digit (23^4)^even no!
=41^even no!
=01
so ans is 01 - 10 years agoHelpfull: Yes(0) No(0)
- how do we know tthat 123!is even @rakesh
- 10 years agoHelpfull: Yes(0) No(0)
TCS Other Question