TCS
Company
Numerical Ability
Algebra
sum of the digits in the product (16^100)*(125^135)
Read Solution (Total 7)
-
- (16^100)*(125^135) = ((2^4)^100)*((5^3)^135) = (2^400) * (5^405)
(2^400)*{(5^400)*(5^5)} = (10^400)*(3125) = 312500000......(400 times)
so the sum of the digits are 3+1+2+5 = 11 - 10 years agoHelpfull: Yes(36) No(1)
- (16^100)*(125^135)= (2^400)*(5^405)
which means (2*5)^400*(5^5)
3+1+2+5+0+0+0..........=11
Ans= 11 - 10 years agoHelpfull: Yes(23) No(2)
- 2^400)*(5^405)=3125*10000000..........
there for sum of digits is 11 - 10 years agoHelpfull: Yes(3) No(0)
- 6^n=6(as last digit)
5^n=5(as last digit)
therefore, 6+5=11 - 10 years agoHelpfull: Yes(3) No(8)
- mariyam...can you please explain your answer in brief...because i m not able to understand after the second step???
- 10 years agoHelpfull: Yes(0) No(0)
- cycle of 6 always end with 6 & cyle of 5 always ends with 5
so sum of digit =11 - 10 years agoHelpfull: Yes(0) No(0)
- 16^100=2^400
125^135=5^405
2^400*5^400*5^5=10^400*3125=312500000000000000000000000000000000000000000000000000000......
sum of the digits=3+1+2+5=11
- 10 years agoHelpfull: Yes(0) No(0)
TCS Other Question