TCS
Company
Logical Reasoning
General Mental Ability
if a+b=3 and a^2+b^2=7 then a^4+b^4= ?
Read Solution (Total 10)
-
- (a+b)^2=a^2+b^2+2ab
3^2=7+2ab
then ab=1..
a^4+b^4=(a^2)^2 + (b^2)^2
this in the form of " a^2+b^2 = (a+b)^2-2ab"
so
(a^2)^2 + (b^2)^2= ((a^2+b^2)^2)-2*a^2*b^2
=7^2-2*1
=49-2
a^4+b^4 =47 - 10 years agoHelpfull: Yes(33) No(0)
- a+b=3
a^2+b^2+2ab=9
as given a^2+b^2=7
then 2ab=2
ab=1
a=1/b,b=1/a
then from a.a+b.b=7
by substitution we got two equations
1+b^4=7b^2
1+a^4=7a^2
then
2+a^4+b^4=7(a^2+b^2)
2+a^4+b^4=7(7)
then
a^4+b^4=49-2
finally a^4+b^4=47 - 10 years agoHelpfull: Yes(4) No(0)
- (a+b)^2 = a^2 + b^2 + 2ab
=> 9 = 7+2ab
=>ab = 1
(a^2+b^2)^2 = 7^2= 49 = a^4 +b^4 +2a^2b^2
a^4+b^4 +2 = 49
a^4+b^4 =47
47 is the answer - 10 years agoHelpfull: Yes(4) No(0)
- a + b=3
a^2 + b^2=7
(a+b)^2=a2 + 2ab + b2
ab=1
(a + b)^4=(a^4 + 2 a^2 b^2+ b^4)
a^4 + b^4=47 - 10 years agoHelpfull: Yes(2) No(0)
- a^2+b^2=7
=>(a+b)^2-2ab=7
=>ab=1
a^4+b^4=(a^2+b^2)^2-2(ab)^2
=7^2-2*1^2
=47 - 10 years agoHelpfull: Yes(1) No(0)
- a+b=3
(a+b)^2=a^2+b^2+2ab
9=7+2ab
ab=1
(a^4+b^4)=(a^2+b^2)^2-2a^2b^2
=49-2
=47 - 10 years agoHelpfull: Yes(1) No(0)
- 47
a^2+b^2=(a+b)^2-2ab
=>2ab=3^2-7
=>ab=1
a^4+b^4=(a^2+b^2)-2(ab)^2
=49-2=47
- 10 years agoHelpfull: Yes(0) No(0)
- (a+b)^2=9
a^2+b^2+2*a*b=9
7+2*a*b=9
a*b=1
a^4+b^4=(a^2+b^2)^2-2*a^2*b^2
=49-2
=47 - 9 years agoHelpfull: Yes(0) No(0)
- first a^4+b^4=(a^2+b^2)^2-2a^2*b^2; ....1
then put the value of a^2+b^2=7 in equ. 1
ab=1;
ans is 49-2*1=47 - 9 years agoHelpfull: Yes(0) No(0)
- a+b=3 ans a^2+b^2=7
solving above equations
ab=1
(a^2+b^2)^2=a^4+b^4+2(ab)^2
7^2=a^4+b^4+2(1^2)
a^4+b^4=47 - 9 years agoHelpfull: Yes(0) No(0)
TCS Other Question