Elitmus
Exam
Category
find remainder of 7^5^5^5/11
Read Solution (Total 8)
-
- first compute the unit digit of 5^5^5 i.e. 5
so Rem[7^5]/11= Rem[(7^2)^2*7]/11=Rem[(49)^2*7]/11=Rem[5^2 *7]/11=Rem[25 * 7]/11
=Rem[3*7]/11=Rem[21]/11=10 - 10 years agoHelpfull: Yes(15) No(2)
- sorry ...the above is wrong ans is 10
(7^5^5^5)/11=7^5/11=10 - 10 years agoHelpfull: Yes(4) No(1)
- First find the remainder of 5^5^5 is 5
7^5/11=7 - 10 years agoHelpfull: Yes(3) No(3)
- ans is 7...........
- 10 years agoHelpfull: Yes(2) No(3)
- yar plz ache se explain krdo 10 kaise aya..... vese to 7 anna chaiyen
- 10 years agoHelpfull: Yes(1) No(2)
- answer is 10
- 10 years agoHelpfull: Yes(1) No(0)
- 7x5x5x5/11=7x125/11=875/11=rem=6
- 10 years agoHelpfull: Yes(0) No(6)
- Answer is 7
8 - 10 years agoHelpfull: Yes(0) No(1)
Elitmus Other Question