Infosys
Company
Numerical Ability
Data Sufficiency
There are 8 digits and 5 alphabets.In how many ways can you form an alphanumeric word using 3 digits and 2 alphabets?
Read Solution (Total 24)
-
- 8C3*5C2*5!=67200
- 10 years agoHelpfull: Yes(32) No(5)
- Select 3 digits from 8 digits i. e., 8C3 ways
And also select 2 alphabets from 5 alphabets i.e.,5C2 ways
Now to form a alphanumeric word of 5 characters we have to arrange the 5 selected digits.
So the answer is (8C3*5C2)*5!=43200 - 10 years agoHelpfull: Yes(31) No(25)
- 3 digits from 8 digits cn b done in 8C3 ways
2 alphabets from 5 alphabets cn b done in 5C2 ways
Now dis selected 5 characters cn b arranged in 5! ways
So answer = (8C3*5C2)*5!=67200
- 10 years agoHelpfull: Yes(11) No(4)
- 8c3*5c2=56*10=560
- 10 years agoHelpfull: Yes(7) No(8)
- ans:
8C3*5C2 - 10 years agoHelpfull: Yes(6) No(7)
- take any three no from 8 digits and 2 alphabets from 5 alphabets
8C3*5C2=56*10=560 - 10 years agoHelpfull: Yes(2) No(3)
- the answer is (8C3*5C2)*5!
- 10 years agoHelpfull: Yes(2) No(1)
- ans is 560*5!=43200
- 10 years agoHelpfull: Yes(1) No(8)
- 560
8p3*5p2=560
- 10 years agoHelpfull: Yes(1) No(2)
- 8C3*5C2*5!=67200
- 10 years agoHelpfull: Yes(1) No(2)
- 8C3*5C2 is the answwer
- 10 years agoHelpfull: Yes(1) No(3)
- 8c3=56
5c2=10
arrange the 5 ch in 5! ways=120
=56*10*120
=67200 - 6 years agoHelpfull: Yes(1) No(0)
- 8c3*5c2=360
- 10 years agoHelpfull: Yes(0) No(4)
- 8c3*5c2*5!=67320
- 10 years agoHelpfull: Yes(0) No(4)
- 8p5*5p3=448
- 10 years agoHelpfull: Yes(0) No(4)
- 8c3 * 5c2 * 5!=57600
- 10 years agoHelpfull: Yes(0) No(3)
- Buy her an hearing aid and propose her :-P
- 10 years agoHelpfull: Yes(0) No(0)
- (8c3*5c2)*5!=403200
- 10 years agoHelpfull: Yes(0) No(2)
- 8c3*5c2*5!=67200
- 6 years agoHelpfull: Yes(0) No(0)
- 8c3*5c2*5!=43200
- 6 years agoHelpfull: Yes(0) No(0)
- we use P&C
5C2 * 8C3 * 5!=67200 - 4 years agoHelpfull: Yes(0) No(0)
- An alphanumeric word of 5 character
Using 3 digits out of 8 digits=8C3=56
and 2 alphabets out of 5 alphabets=5C2=10
The 5 character can be arranged among then in 5! ways
Therefore the total number of ways to form alphanumeric word =56*10*5!=67200 - 4 years agoHelpfull: Yes(0) No(0)
- It is a question of combination. So 8C3 digit and 5c2 for word.
8C3 * 5C2 =560 - 4 years agoHelpfull: Yes(0) No(0)
- 8c3*5c2*12=6720
- 3 years agoHelpfull: Yes(0) No(0)
Infosys Other Question