Accenture
Company
Numerical Ability
Arithmetic
Question: If 2x = 3y = 6-z then Prove that 1/x + 1/y + 1/z=0
Solution:
2x = 6 -z Þ 2 = 6-z/x -------------(i)
3y = 6 -z Þ 3 = 6-z/y -------------(ii)
Multiplying (i)and(ii)
2x3 = 6-z/x x 6-z/y
61 = 6-z/x +-z/y
Þ1 = (-z/x) +(-z/y)
Þ1= -z(1/x +1/y)
Þ1/-z = 1/x +1/y
Þ 1/x + 1/y + 1/z = 0
Read Solution (Total 2)
-
- 2x = 6 -z Þ 2 = 6-z/x -------------(i)
3y = 6 -z Þ 3 = 6-z/y -------------(ii)
Multiplying (i)and(ii)
2x3 = 6-z/x x 6-z/y
61 = 6-z/x +-z/y
Þ1 = (-z/x) +(-z/y)
Þ1= -z(1/x +1/y)
Þ1/-z = 1/x +1/y
Þ 1/x + 1/y + 1/z = 0
- 9 years agoHelpfull: Yes(0) No(3)
- The question is
2^x =3^y = 6^(-z)
Prove that
1/X + 1/y + 1/z = 0 - 2 years agoHelpfull: Yes(0) No(0)
Accenture Other Question