exam
Maths Puzzle
Numerical Ability
Trigonometry
If A+B+C=90 degress, prove that
sin2A+sin2B+sin2C = 4cosAcosBcosC
Read Solution (Total 1)
-
- Since A + B + C = 90, sinA = cos(B+C), sinB = cos(A+C), sinC = cos(A+B)...
Sin2A + sin2B + sin2C
• 2sin(A+B)cos(A-B)+2sinCcosC
• 2sin(A+B)cos(A-B)+2cos(A+B)sin(A+B)
• 2sin(A+B) [cos(A-B) + cos(A+B)]
• 2sin(A+B) [cosAcosB + sinAsinB + cosAcosB – sinAsinB]
• 4sin(A+B)cosAcosB
• 4cosCcosAcoB
• 4cosAcosBcosC (proven)
Hope that helps XD
- 9 years agoHelpfull: Yes(1) No(1)
exam Other Question