Elitmus
Exam
Numerical Ability
Arithmetic
how many odd divisor does the no,49000000 have..?????
Read Solution (Total 3)
-
- 49000000= 49* 10^6= 7^2* (2*5)^6= 2^6 * 5^6 * 7^2
so total no. of odd divisors= 1*7*3= 21 - 10 years agoHelpfull: Yes(11) No(1)
- 49000000=49*1000000
7*7*100*100*100
7*7*10*10*10*10*10*10
7*7*5*5*5*5*5*5*2*2*2*2*2*2
IF U HAVE ODD DIVISIORS:(7*7)(5*5*5*5*5*5)(2*2*2*2*2*2)=CONISIDER EVEN FACTOR POWER IS 0 LIKE 2 POWER 0=1
NEXT 7*7=(N+1)=3 FACTORS SIMILAR FOR 5*5*5*5*5*5=(n+1)=7
SO ODD DIVISIORS ARE 7*3=21
- 10 years agoHelpfull: Yes(4) No(1)
- 49000000= 49* 10^6= 7^2* 2^6* 5^6
To find the ODD Divisor Look at the non-2 terms = 7^2* 5^6 = [2+1] *[6+1] =3*7=21 - 10 years agoHelpfull: Yes(0) No(0)
Elitmus Other Question