Wipro
Company
Numerical Ability
Log and Antilog
If log(P)=(1/2) log(q)=(1/3)log(r), then which of the following option is true..??
1- p2=q3r2
2- q2=pr
3- q2=r3p
4- r=p2q2
Read Solution (Total 11)
-
- log p=1/2logq, q=p2
logq=1/3logr, r=q3
r=q.q2
=p2q2 - 9 years agoHelpfull: Yes(10) No(3)
- answer:option 2
log(p)=1/2log(q) ----> q=p^2
log(p)=1/3log(r) -----> r=p^3
let assume p=2,q=4,r=8 which satisfies the above relations,then verify the options
q^2=4^2=16
p*r=2*8=16 - 9 years agoHelpfull: Yes(5) No(0)
- option 2
log p=k p=e pow k q=e pow k pow 2 r = e pow k pow 3
so option 2 satisfies - 9 years agoHelpfull: Yes(2) No(0)
- from the property of log
p=q^1/2=r^1/3
so, p^2=q
p^3=r
now, q^2=p^4
=P^3.P
q =r.p - 9 years agoHelpfull: Yes(1) No(0)
- log p = 1/2*log q
log p = log q^1/2
p = q^1/2
log q^1/2=log r^1/3
q^1/2 = r^1/3
now p=q^1/2
p *p = q^1/2 *p
p^2 = q^1/2 *r^1/3
ans:option 1 - 10 years agoHelpfull: Yes(0) No(4)
- p=1/2
q=1/3
so r=1/4
apply on option..
in 2nd option q*2=p*r
2/3=(1/2)*(1/3)
=1/4
- 9 years agoHelpfull: Yes(0) No(2)
- log p=1/2 log q
p^2=q ----------------eq1
lop p=1/3 log r
p^3= r ----------------------eq2
relating eq1 and eq2
r=p^3=p^2*p (p^2=q)
r=pq
q=r/p
squaring both sides
q^2=r^2/p^2
q^2=(r^2/p^3)*p
q^2=(r^2/r)*p ----------------....(p=r^3)
q^2=rp ans(2)
solved by shambhu Mahato - 9 years agoHelpfull: Yes(0) No(0)
- p6=q3=r2
q=p2
r=p3
so, q2=p4
pr=p4
so,q2=pr - 9 years agoHelpfull: Yes(0) No(0)
- log p =log q^1/2 => p=q^1/2
log q^1/2 = log r^1/3 => q^1/2=r^1/3
by considering option b
i.e
q^2=pr
because
q^1/2 *q^1/2 *q^1/2 *q^1/2 = p * p*p * p
= p * r^1/3 * r^1/3 *r^1/3
= p * r^3/3 [since when bases are equal powers should be added]
= P * r^1
= pr - 9 years agoHelpfull: Yes(0) No(0)
- log(p)=1/2log(q)=1/3log(r)=k
p=e^k;
q=e^2k;
r=e^3k ; q^2=p.r;( e^2k)^2=e^k.e^3k=>e^4k - 9 years agoHelpfull: Yes(0) No(0)
- log(p)=1/2log(q)=1/3log(r)
p=q^1/2=r^1/3
p^2=q
p^3=r
q^6=r^2
then we get q^2=pr - 7 years agoHelpfull: Yes(0) No(0)
Wipro Other Question