TCS
Company
anup managed to draw 7 circle of equal raddi with their centres on the diagonal of a square such that the two extreme circle touch two sides of the square and each middle circle touches two circle on other side.find the ratio of the radious of the circle to the side of the square.
(2+7root 2):1
1:(2+7root 2)
1:(2+6root 2)
1:(4+7root 3)
please explain
Read Solution (Total 3)
-
- First refer to the diagram in the following link:
http://writer.zoho.com/public/suchandra/ques
1)In the diagram let the radius of each circle be "x"
2)Now the arrangement forms two small squares at the end of the diagonal on both sides as shown. Since radius of circle is x, we can calculate the diagonal length at these ends which is x√2. Both sides, so total of 2√2x.
3)Now the remaining length of the diagonal is easy. It is 12x.
4)Total length of the diagonal is now 2√2x + 12x
5)we can now get the length of the side of a square =(2√2x + 12x)/√2 = 2x+6√2x -->(side = diagonal/∠- 14 years agoHelpfull: Yes(15) No(0)
- First refer to the diagram in the following link:
http://writer.zoho.com/public/suchandra/ques
At first let the side of the square is x
then the length of the diagonal is sqrt of 2 *x.
In the diagram length of the diagonal created by 7 circle r 12r where r is the radius of the circles.
So ratio will be r/x=sqrt of 2/12r.
ans will be C - 14 years agoHelpfull: Yes(3) No(1)
- yes. 3rd option is correct 1:(2+6root2)
- 14 years agoHelpfull: Yes(1) No(1)
TCS Other Question