TCS
Company
Numerical Ability
Number System
(32^32^32)/9 will leave a rimender?????
1- 4
2- 7
3- 1
4- 2
Read Solution (Total 10)
-
- 32 = 2⁵
(2⁵)³² = 2¹⁶⁰
(2¹⁶⁰)³² = 2⁵¹²⁰
You are looking for the remainder of 2⁵¹²⁰ ÷ 9.
2¹ mod 9 = 2
2² mod 9 = 4
2³ mod 9 = 8
2⁴ mod 9 = 7
2⁵ mod 9 = 5
2⁶ mod 9 = 1
2⁷ mod 9 = 2
2⁸ mod 9 = 4
2⁹ mod 9 = 8
2¹⁰ mod 9 = 7
2¹¹ mod 9 = 5
2¹² mod 9 = 1
...
Note that the pattern repeats, and when the exponent is divisible by 6, the remainder is 1.
5120 = 6(853) + 2, therefore
2⁵¹²⁰ mod 9 = 4 - 9 years agoHelpfull: Yes(35) No(0)
- ANS IS : 4
=(32^32^32)/9
=(2^5)^32
=(2^160)^32
=(2^5120)/9
2¹ mod 9 = 2
2² mod 9 = 4
2³ mod 9 = 8
2⁴ mod 9 = 7
2⁵ mod 9 = 5
2⁶ mod 9 = 1
2⁷ mod 9 = 2
2⁸ mod 9 = 4
2⁹ mod 9 = 8
2¹⁰ mod 9 = 7
2¹¹ mod 9 = 5
2¹² mod 9 = 1
LOOKING FOR CYCLIC REMAINDER THEOREM
5210/9=REMAINDER IS 8
8TH POSITION VALUE IS 4
- 9 years agoHelpfull: Yes(12) No(0)
- 32^32^32=(2^5)^32^32=2^5120.
2^5120/9
=((2^3)^1706*2^2)/9
=((9-1)^1706*2^2)/9
=(-1)^1706*4
=4 - 9 years agoHelpfull: Yes(9) No(0)
- the last 2 digits of 2^10 will always be 76.
so the last 2 digits of 2^5120=76.
76/9 = remainder is 4 - 9 years agoHelpfull: Yes(1) No(0)
- please answer to this question??
- 9 years agoHelpfull: Yes(0) No(1)
- answer will be 4
- 9 years agoHelpfull: Yes(0) No(3)
- ans will be 4
- 9 years agoHelpfull: Yes(0) No(2)
- 32/9=5(rem)
5^32^32/9
5/9=5
25/9=7
7*5 / 9=8
5^6 / 9 =1 rem= 1
then 32^32/6= 2^32/6
2/6=2
4/6=4
8/6=2
16/6=4
odd even funda
4th term of cycle that is 5^4/9=4(rem) answaer - 9 years agoHelpfull: Yes(0) No(0)
- the remainder will be 4.hence option 1 is the ans.
- 9 years agoHelpfull: Yes(0) No(2)
- The Euler no. of 9 is =9 * 2/3 =6
now 32/6 remainder=2 and 32/9 remainder is=5
then (5^2)^32=25^32.
again using Euler no. 32/6 leaves remainder 2.
Then,
(5^2)^2/9 =625/9 leaves remainder 4. - 9 years agoHelpfull: Yes(0) No(0)
TCS Other Question