Elitmus
Exam
Logical Reasoning
Decision Making and Problem Solving
if 1/a + 1/b + 1/c=1/(a+b+c) where a+b+c#0,abc#0 what is the value of (a+b)(b+c)(c+a)?
a)equals 0
b)greater than 0
c)less than 0
d)cannot be determined
Read Solution (Total 16)
-
- 0
(ab+bc+ca)/abc=1/(a+b+c)
=> abc=a2b+ab2+ac2+a2c+b2c+bc2+3abc
=> a2b+ab2+ac2+a2c+b2c+bc2+2abc=0
(a+b)(b+c)(c+a)=(ab+ac+b2+bc)(c+a)
=abc+ac2+b2c+bc2+a2c+a2b+b2a+abc
=0 - 12 years agoHelpfull: Yes(115) No(3)
- a)equals 0
when a= -b
then LHS of 1/a + 1/b + 1/c=1/(a+b+c)
1/a + 1/b + 1/c = 1/c = RHS = 1/(a+b+c)
Then a+b=0
hence
(a+b)(b+c)(c+a)=0
- 12 years agoHelpfull: Yes(34) No(17)
- 0
1/a + 1/b + 1/c=1/(a+b+c)
(ab+bc+ca)/abc = 1/(a+b+c)
a2c+abc+a2b+abc+b2c+ab2+ac2+bc2+abc=abc
a2c+a2b+b2c+ab2+ac2+bc2+2abc=0 ------- 1
(a+b)(b+c)(c+a)=a2c+a2b+b2c+ab2+ac2+bc2+2abc=0
Hence answer should be 0.
- 12 years agoHelpfull: Yes(12) No(1)
- hit and trial method.
1/a + 1/b + 1/c=1/(a+b+c) holds true if a= -c and b can have any other value. take an example of a = 2 , c = -2 and b = 3. so, a = -c i.e. (c+a) = 0 therfore ans is 0. - 9 years agoHelpfull: Yes(3) No(0)
- 1/a+1/b+1/c=1/(a+b+c)
by solving this eq we get
a^2b+a^2c+ab^2+ac^2+bc^2+b^2c+2abc=0.........(1)
now expanding (a+b)(b+c)(c+a)
wil same as equation (1)
so the ans wil "equals 2 zero" - 10 years agoHelpfull: Yes(2) No(0)
- 1/a +1/b +1/c =1/(a+b+c)
=>1/a +1/b = (1/(a+b+c)) -(1/c)
=> 1/a +1/b =(c-(a+b+c))/(c(a+b+c))
=> (a+b)/ab =(-(a+b)/c(a+b+c))
=> c(a+b+c)(b+a) = - ab(a+b)
=> (a+b)( ca +cb +cc + ab ) = 0
=> (a+b)( ca + cc + cb + ab) = 0
=> (a+b)(b+c)(c+a)=0 - 10 years agoHelpfull: Yes(2) No(0)
- greater than 0
- 9 years agoHelpfull: Yes(1) No(0)
- 1/a + 1/b + 1/c=1/(a+b+c) solve this ,
we will get a2b+ab2+ac2+a2c+b2c+bc2+2abc=0
(a+b)(b+c)(c+a)=a2b+ab2+ac2+a2c+b2c+bc2+2abc=0 - 8 years agoHelpfull: Yes(1) No(0)
- It is only possible when a,b,c equal to 1. Therefore, the answer is 8
Therefore ans is
b) greater than zero - 8 years agoHelpfull: Yes(1) No(0)
- putting a = -b or b = -c or c = -a gives ans equal to zero
- 11 years agoHelpfull: Yes(0) No(2)
- greater than 0
- 10 years agoHelpfull: Yes(0) No(3)
- guys plzz tell how to prepare for the section PS and I m from 2014 batch..plz help..and ty in advance..:)
- 10 years agoHelpfull: Yes(0) No(0)
- 1/a+1/b+1/c= 1/(a+b+c)
=> (a+b+c)/a+(a+b+c)/b+(a+b+c)/c=1
subtracting 3 both side,
=> [(a+b+c)/a]-1+[(a+b+c)/b]-1+[(a+b+c)/c]-1=1-3
=> (b+c)/a+(a+c)/b+(a+b)/c = -2
adding 2 both side,
=> [(b+c)/a+(a+c)/b+(a+b)/c]+2 = -2+2
=> (bc(b+c)+ ac(a+c)+ab(a+b))/(abc) + 2 = 0
=> [bc(b+c)+ ac(a+c)+ab(a+b)]+2abc = 0*abc
=> bc(b+c)+ ac(a+c)+ab(a+b)+2abc=0
=> b^2c+c^2b+a^2c+c^2a+a^2b+b^2a+2abc=0
=> a(b^2+ 2bc+c^2) + a^2 b+ a^2c + b^2 c +bc^2 =0
=> a(b+c)^2 + a^2(b+c) + bc(b+c) =0
=> (b+c) [ a^2 +a(b+c)+ bc]=0
=> (b+c) [ a^2 +ab+ac+ bc]=0
=> (b+c) [ a(a+b)+c(a+b)]=0
=> (b+c)(a +b)(c+a)=0
- 8 years agoHelpfull: Yes(0) No(0)
- Why r u expanding this equation just satisfy the values of a b and c let take a=3 b=-1 and c =1 it will satisfy the equation n get the answer 0
- 7 years agoHelpfull: Yes(0) No(0)
- opton b
less than 0 - 5 years agoHelpfull: Yes(0) No(0)
- 1/a+1/b+1/c=bc+ac+ac/a+b+c
a+b+c=0
abc=0
rhs=1/a+b+c
=0 - 4 years agoHelpfull: Yes(0) No(0)
Elitmus Other Question