self
Maths Puzzle
If n is a positive integer such that
n!/(n-2)! = 342, find n.
Read Solution (Total 5)
-
- (n)(n-1)(n-2)!/(n-2)!=342
n^2-n-342=0
(n-19)(n+18)=0
n=19,-18 - 12 years agoHelpfull: Yes(4) No(1)
- n = 19
We write n! = n*(n-1)(n-2!)
Therefore
n!/(n-2)! = n(n-1)*(n-2)!/(n-2)! = n(n-1).
--> n(n-1) = 342
--> n^2 -n - 342 = 0
--> n^2- 19n +18n -342 = 0
--> n(n-19) +18(n -19) = 0
--> (n-19)(n+18) = 0
Therefore n -19 = 0; n +18 = 0;
(i.e) n =19 ; n = -18
We want positive integer. So, n=19.
19!/(19-2)! = 342
19!/17! = 342. - 12 years agoHelpfull: Yes(2) No(1)
- n = 19
We write n! = n*(n-1)(n-2!)
Therefore
n!/(n-2)! = n(n-1)*(n-2)!/(n-2)! = n(n-1).
--> n(n-1) = 342
--> n^2 -n - 342 = 0
--> n^2- 19n +18n -342 = 0
--> n(n-19) +18(n -19) = 0
--> (n-19)(n+18) = 0
Therefore n -19 = 0; n +18 = 0;
(i.e) n =19 ; n =18
We want positive integer. So, n=19.
19!/(19-2)! = 342
19!/17! = 342. - 12 years agoHelpfull: Yes(1) No(1)
- ans: 19
n(n-1)(n-2)! / (n-2)!
n(n-1)=342
n^2 - n -342=0
n=-18, 19 - 12 years agoHelpfull: Yes(0) No(1)
- (n*(n-1)*(n-2)!)/(n-2)!=342
n^2-n-342=0
n^2+19n-18n-342=0
n=19 (a positive integer)! - 12 years agoHelpfull: Yes(0) No(1)
self Other Question