TCS
Company
Numerical Ability
Algebra
In this question A^B means A raised to the power B. let f(x)= 1+x+x^2+...x^6. The remainder when f(x^7) is divided by f(x) is:
a) 7
b) 0
c) 6
d) none of these
Read Solution (Total 9)
-
- ans d none of these
f(x^7)= 1+ x^7 + (x^7)^2 + .... + (x^7)^6
= 1+x^7 + x^14 + .... + x^4 = 1+x^7 * (1+x+x^2 + ... +x^6)
= 1+ x^7 f(x)
f(x^7)/f(x) = (1+ f(x)*x^7 ) / f(x)
the remainder is 1 - 9 years agoHelpfull: Yes(21) No(21)
- There is a pattern.
if , f(x) = 1+x+x^2+.....+x^(n).
for x > 1,
then the remainder when f(x^(n+1)) is divided by f(x) is (n+1).
so , here remainder is 7.
- 9 years agoHelpfull: Yes(12) No(5)
- to find remainder of a polynomial fn f(x)/g(x)
put x = 0,1 or any value
put x=0
f(x)=1
f(x^7)=1
f(x^7)/f(x)= 1/1 => remainder = 0
put x=1
f(x)=7
f(x^7)=7
f(x^7)/f(x)= 7/7 => remainder = 0
- 9 years agoHelpfull: Yes(8) No(6)
- remainder is 0.
at x=1
f(x^7)/f(x)=1 - 9 years agoHelpfull: Yes(4) No(5)
- ans d none of these
f(x^7)= 1+ x^7 + (x^7)^2 + .... + (x^7)^6
= 1+x^7 + x^14 + .... + x^4 = 1+x^7 * (1+x+x^2 + ... +x^6)
= 1+ x^7 f(x)
f(x^7)/f(x) = (1+ f(x)*x^7 ) / f(x)
the remainder is 1 - 9 years agoHelpfull: Yes(1) No(11)
- remainder for f(x^1) is 1
and for f(x^2) is 2
than similarly,
for f(x^7) is 7
hence 7 is the answer
- 9 years agoHelpfull: Yes(1) No(2)
- d..
let x=1..
then f(x)=7..
and
f(x^7)=8..thus we get,,
f(x^7)/f(x)=8/7=1
thus option is d - 9 years agoHelpfull: Yes(0) No(2)
- ans d none of these
f(x^7)= 1+ x^7 + (x^7)^2 + .... + (x^7)^6
= 1+x^7 + x^14 + .... + x^4 = 1+x^7 * (1+x+x^2 + ... +x^6)
= 1+ x^7 f(x)
f(x^7)/f(x) = (1+ f(x)*x^7 ) / f(x)
the remainder is 1
Read more at http://www.m4maths.com/placement-puzzles.php?ISSOLVED=&page=6&LPP=10&SOURCE=tcs&MYPUZZLE=&UID=&TOPIC=&SUB_TOPIC=#csdouGSWAaSU6C5k.99 - 9 years agoHelpfull: Yes(0) No(0)
- plzzzzzzzzzzzzzzz
- 9 years agoHelpfull: Yes(0) No(0)
TCS Other Question