Elitmus
Exam
Numerical Ability
Quadratic Equations
hOW many values of C in equation X^2-5X+C results in Rational roots which are integers??
options:
a.) 1
b.) 3
c.) 6
d.) Infinite
Read Solution (Total 15)
-
- I think option d is Correct.
(-b(+ or -)sqrt(b^24ac))/2a=0; - 9 years agoHelpfull: Yes(7) No(3)
- d) Infinite
- 9 years agoHelpfull: Yes(7) No(2)
- i think it is 3..
c will be 0,4,6 - 9 years agoHelpfull: Yes(7) No(3)
- for positive C, i think number of value are 3
- 9 years agoHelpfull: Yes(2) No(5)
- sqrt(b^2-4ac)>=0 so sqrt(25-4c)>=0 => 25>=4c => 6.25>=c
so the possible value to c can be 1,2,3,4,5,6. - 9 years agoHelpfull: Yes(2) No(1)
- solution:::(d) Infinite
sqrt(b^2-4ac)>=0 so sqrt(25-4c)>=0 => 25>=4c => 6.25>=c
So the possible values of c can be infinite(c - 9 years agoHelpfull: Yes(2) No(3)
- ans:b bcz by substitute the values 0,4,6 in c we get a perfect value of x
- 9 years agoHelpfull: Yes(1) No(0)
- Ans id 6.. bcoz iff we put c=6,x^2-3x-2x+6,,,, so x=2,3
- 9 years agoHelpfull: Yes(0) No(2)
- ans is (D)
- 9 years agoHelpfull: Yes(0) No(0)
- C has 0,4,6 values in positive integer
C= -6,-24,-36,-50 and so on in negative integer therefore infinite solution will exit - 9 years agoHelpfull: Yes(0) No(0)
- discriminant (D)= (25-4c)/2
for real roots D>=0
so (25-4c)/2>=0
25-4c>=0
25>=4c
c - 7 years agoHelpfull: Yes(0) No(0)
- discriminant(D) = (b^2-4(a)(c)) = (25-4c)
for c = -15, -25, -45, -35, -55, -65, -75, -85, -95, -105..... discriminant root is perfect
so infinite c values - 7 years agoHelpfull: Yes(0) No(1)
- @sywhussaini
discrinant = 15^2, 25^2, 35^2, 45^2, 55^2, 65^2, 75^2, 85^2....
not c
SO c = -50, -150, -300, -500, -750, -1050, -1400, -1800..... - 7 years agoHelpfull: Yes(0) No(0)
- 3.i.e =0,4,6
- 7 years agoHelpfull: Yes(0) No(0)
- right ans is c
Explanation.....
b^2-4ac>=0
b=5, a=1
so c will 0,1,2,3,4,5 - 7 years agoHelpfull: Yes(0) No(1)
Elitmus Other Question