TCS
Company
15)p(x)=((x^2012)+(x^2011)+(x^2010)+…………..+x+1)^2-x^2012
Q(x)=((x^2011)+(x^2010)+……………………+x+1).The remainder when p(x) is divided by Q(X) is
a)1 b)0 c)x+1 d)x-1
Read Solution (Total 4)
-
- 2013^2-2011^2/2012=0 ,.....so 0 remainder
- 12 years agoHelpfull: Yes(7) No(0)
- Let us multiply g(x) with x on the both sides
x.g(x) = x+x2+x3+.......x2012
add 1 on both sides
x. g(x) + 1 = 1+x+x2+x3+.......x2012
Substitute this value in f(x)
then f(x) = (x.g(x)+1)2−x2012
f(x) = x2.g(x)2+2.g(x)+1−x2012
Now f(x) is divisible by g(x) first two terms are exactly divisible by g(x) and we get 1 - x2012
But 1 - x2012 = (1 - x)(1+x+x2+x3+.......x2011)
if this expression is divisible by g(x) we get (1 -x) as remainder.
- 12 years agoHelpfull: Yes(2) No(10)
- 4 example take x=1
p=3
q=2
remainder=1
- 12 years agoHelpfull: Yes(0) No(1)
- take x=1
so p(x)= (2012^2)-1
q(x)= 2011
so p(x)/q(x)=((2012^2)-1)/2011
=(((2011+1)^2)-1)/2011
=(((n+1)-1)^2)/n
=(n^2 - 2n)/n
=(n(n-2))/n =n-2
so remainder =0 - 11 years agoHelpfull: Yes(0) No(0)
TCS Other Question