CTS
Company
Logical Reasoning
Number Series
2 power 300,3 power 200. Which is greater?
Read Solution (Total 13)
-
- 2^300=2^(3*100)=(2^3)^100=8^100
and
3^200=3^(2*100)=(3^2)^100=9^100
9^100 > 8^100 so
3^200 is greater than 2^300 - 13 years agoHelpfull: Yes(71) No(0)
- 3^200 > 2^300
taking 100th root of 2^300/3^200
we got 2^3/3^2 =8/9 2^300 - 13 years agoHelpfull: Yes(6) No(0)
- changing it into logritimic 300log2=90.4583 and 200log3=95.424 hence 3 power is greater
- 13 years agoHelpfull: Yes(4) No(4)
- 3 power 200 is greater than 2 power 300
becoz
2^300=2^(3*100)=8^100
and
3^200=3^(2*100)=9^100
- 12 years agoHelpfull: Yes(3) No(0)
- 2^300=2^(3*100)=8^100
and 3^200=3^(2*100)=9^100
hence 3 power 200 is greater - 12 years agoHelpfull: Yes(2) No(0)
- 2^300=(2^3)^100=8^100 and 3^200=(3^2)^100=9^100 and 9> 8 so srcond term is greater.
- 10 years agoHelpfull: Yes(1) No(0)
- (2^300)=2.03*10^90
(3^200)=2.65*10^95
hence 3^200 is greater - 9 years agoHelpfull: Yes(1) No(0)
- Assume 2 ^3 & 3^2 , so 2^3 = 8,3^2 = 9,
so 9 > 8, 3^200 is answer - 8 years agoHelpfull: Yes(1) No(0)
- 2^300=2^(3^100)=8^100
3^200=3^(2^100)=9^100
so, 3^200 is greater - 8 years agoHelpfull: Yes(1) No(0)
- 3 power 200 is greater no math use,any concept trough solve it.
- 8 years agoHelpfull: Yes(1) No(0)
- Ans:
3^200 - 8 years agoHelpfull: Yes(1) No(0)
- 2^300=(2^3)^100=8^100
3^200=(3^2)^100=9^100 - 8 years agoHelpfull: Yes(1) No(0)
- 3 power 200 is greater
- 12 years agoHelpfull: Yes(0) No(0)
CTS Other Question