igate
Company
General Ability
General Knowledge
( 517 X 517 X 517 + 483 X 483 X 483)/(517 X 517 – 517 X 483 + 483 X 483). Find the result of this
expression.
A. 1
B. 1000
C. 5436948
D. 23,45,683
Read Solution (Total 37)
-
- B.
Cuz, a3+b3=(a+b)(a2-ab+b2)
so [(a+b)(a2-ab+b2)] / (a2-ab+b2)= a+b=517+483=1000. - 9 years agoHelpfull: Yes(50) No(2)
- 1000: as 517+483
- 9 years agoHelpfull: Yes(3) No(1)
- 1000
(a^3+b^3)=(a+b)*(a^2+b^2-ab) - 9 years agoHelpfull: Yes(1) No(2)
- (a^3+b^3)/(a^2-a*b+b^2)=a+b
- 9 years agoHelpfull: Yes(1) No(0)
- (a3+b3)/(a2-ab+b2)=a+b
hence , ans=517+483=1000 - 9 years agoHelpfull: Yes(1) No(0)
- 1000
(a3 + b3)/ (a2-ab+b2)=(a+b)
--> = (517+483)=1000 - 8 years agoHelpfull: Yes(1) No(0)
- A+B=1000
Ans:B - 9 years agoHelpfull: Yes(0) No(0)
- B).1000., By using Vedic Method of multiplication, We get ans as 1000.
- 9 years agoHelpfull: Yes(0) No(2)
- 1000 a3+b3=(a+b)(a2-a*b+b2)
- 9 years agoHelpfull: Yes(0) No(0)
- (a^3+b^3)/a^2-ab+b^2=a+b=517+483=1000
- 9 years agoHelpfull: Yes(0) No(1)
- a^3+b^3=a^2+b^2-ab
Then a+b=1000 - 9 years agoHelpfull: Yes(0) No(0)
- 1000 IS THE ANS .USE (A+B)^3
- 9 years agoHelpfull: Yes(0) No(0)
- B.1000
(a^3+ b^3)/(a^2-ab+ b^2)=a+b - 9 years agoHelpfull: Yes(0) No(0)
- a3+b3=(a+b)(a2+b2-a*b)
1000 - 9 years agoHelpfull: Yes(0) No(0)
- B.
explaination-
a+b=(a^3+b^3)/(a^2-ab+b^2) - 9 years agoHelpfull: Yes(0) No(0)
- a+b = 517+483 =1000
- 9 years agoHelpfull: Yes(0) No(0)
- b.1000
as it is of the form (a^3+b^3)/(a^2-a*b+b^3) - 9 years agoHelpfull: Yes(0) No(0)
- a=517,b=483
a+b=517+483=1000 - 9 years agoHelpfull: Yes(0) No(0)
- 517+483=1000
- 9 years agoHelpfull: Yes(0) No(0)
- B.1000
as a^3+b^3=(a+b)(a^2-ab+b^2) - 9 years agoHelpfull: Yes(0) No(0)
- 1ooo this is very simple a^3+b^3=(a+b)(a^2-ab+b^2)
- 9 years agoHelpfull: Yes(0) No(0)
- a=517,b=483
then it means
(a^3+b^3)/(a^2-ab+b^2)=(a+b)(a^2-ab+b^2)/(a^2-ab+b^2)=a+b
then ans is 517+483=1000 - 9 years agoHelpfull: Yes(0) No(0)
- B.1000
The result of the question according to BODMAS rule - 9 years agoHelpfull: Yes(0) No(0)
- ANSWER B
APPLYING THE ( a^3+b^3) formula - 9 years agoHelpfull: Yes(0) No(0)
- 10000
a+b=1000 - 9 years agoHelpfull: Yes(0) No(1)
- B. 1000
since it is in the form (a^3+b^3)/(a^2-ab+b^2) = a+b
so 517+483 = 1000 - 9 years agoHelpfull: Yes(0) No(0)
- 1000
formula a^3+b^=(a+b)(a^2-ab+b^2) then
517+483=1000 - 9 years agoHelpfull: Yes(0) No(0)
- its in terms of formula in the numerator and as well as in denominator
numerator= (517x517x517+483x483x483)
(517^3+483^3) = (a^3+b^3) = (a+b) (a^2-ab+b^2)
denominator = (517x517-517x483+483x483) = (a^2-ab+b^2)
therefore , (a^2-ab+b^2) will get cancelled & remaining is (a+b)
which equals 517+483 = 1000.
- 9 years agoHelpfull: Yes(0) No(0)
- (a^3+B^3)/(A^2-ab+b^2) = (a+b). so, 517+483 = 1000
- 9 years agoHelpfull: Yes(0) No(1)
- a^3+b^3=(a+b)(a^2-ab+b^2)
so answer should be (a+b)=517+483=1000 - 9 years agoHelpfull: Yes(0) No(0)
- It just look like ((a*a*a)+(b*b*b))/((a*a)-(a*b)+(b*b))-------> a3+b3/(a2-ab+b2)
we know that a3+b3=(a+b)(a2-ab+b2)
so, a+b is our result
i.e; = 517+483-------->1000 - 8 years agoHelpfull: Yes(0) No(0)
- a^3+b^3=( a+b)(a^2-ab+b^2)
Use above formula - 8 years agoHelpfull: Yes(0) No(0)
- =>(a^3+b^3)/(a^2-ab+b^2)
=>(a+b)(a^2-ab+b^2) / (a^2-ab+b^2)
=>a+b
=>a=517 and b=483 then a+b=1000 - 8 years agoHelpfull: Yes(0) No(0)
- bbbbbbb
ieufhfjbfvfadvsanvasc vnxchv - 8 years agoHelpfull: Yes(0) No(0)
- a3+b3=(a+b)(a2-ab+b2)
so answer is a+b=517+483=1000 - 8 years agoHelpfull: Yes(0) No(0)
- 1000 by using a3+b3 formula
- 8 years agoHelpfull: Yes(0) No(0)
- b.1000
x=517
y=483 - 8 years agoHelpfull: Yes(0) No(0)
igate Other Question