Elitmus
Exam
Numerical Ability
Age Problem
How many combinations of numbers less than 8 make their sum=8 (repetation of numbers is allowed)
Read Solution (Total 11)
-
- 8 digit no, =11111111
7 digit no.= 1111112,1111121,1111211........= total 7 numbers
6 digit no. = 111113,111131...........111122,111221....= total 21 numbers
5 digit no.= 11114,11141........11123....11231.....=total 25 numbers
4 digit no.= 2222,1115,1151,1511,5111....1133.....1124....= total 22 numbers
3 digit no.= 116,161,611,224,242,422,332,323,233....125....134...= total 21 numbers
2 digit no. = 44,17,71,26,62,35,53 = total 7 numbers.
now total possible numbers are (without zero) = 104 - 9 years agoHelpfull: Yes(17) No(1)
- without zero-
8 digit no, =11111111
7 digit no.= 1111112,1111121,1111211........= total 7 numbers
6 digit no. = 111113,111131...........= total 6 numbers
5 digit no.= 11114,11141.................=total 5 numbers
4 digit no.= 2222,1115,1151,1511,5111= total 4 numbers
3 digit no.= 116,161,611,224,242,422,332,323,233= total 9 numbers
2 digit no. = 44,17,71,26,62,35,53 = total 7 numbers.
now total possible numbers are (without zero) = 1+7+6+5 +4+9+7=39 may be - 9 years agoHelpfull: Yes(6) No(6)
- 20 (if zero (0) is not considerd as a number)
-----
17,26,35,44
116,125,134,224,233
1115,1124,1133,2222,2213
11114,11123
111113,111122
1111112
11111111
- 9 years agoHelpfull: Yes(2) No(2)
- ((1,7) (7,1) (6,2) (2,6) (5,3)(3,5) (4,4) =7 ans
- 9 years agoHelpfull: Yes(1) No(4)
- if you form a number with the help of zero (0) digit as well then there will be lot of number can be formed.
- 9 years agoHelpfull: Yes(0) No(0)
- srry 4 digit no. =total 5 numbers
so total will be 40 numbers - 9 years agoHelpfull: Yes(0) No(0)
- but in combination (1,7)=(7,1)
both are same combination
so we count 1 not 2 - 9 years agoHelpfull: Yes(0) No(0)
- ADMIN CAN U PLS TELL THE CORRECT ANSWER....IT IS BIT CONFUSING
AS SOON AS POSSIBLE
- 9 years agoHelpfull: Yes(0) No(0)
- 117 ans
- 9 years agoHelpfull: Yes(0) No(0)
- 0,1,2,3,4,5,6,7,8
(1,7)=2! ways
(0,8)=2!ways
(2,6)=2! ways
(3,5)=2!ways
(4,4)=1 way
2+2+2+2+1=9 - 9 years agoHelpfull: Yes(0) No(1)
- i think 115
- 9 years agoHelpfull: Yes(0) No(0)
Elitmus Other Question