TCS
Company
Numerical Ability
Algebra
F(x)=ax+b where a and b are real numbers if f(f(f(x)))=8x+21 what is the value of a+b? a)2 b)4 c)5 d)3
Read Solution (Total 4)
-
- f(x)=ax+b;
f[f(x)]=a^x+ab+b
f{f[f(f)]}=xa^3+a^2b+ab+b=8x+21
xa^3=8x ==>a=2
ba^2+ab+a=21 ,, put value of a=2
then b=3
ANS:=
a+b=5
- 9 years agoHelpfull: Yes(23) No(1)
- f(f(f(x))) = a(a(ax+b)+b)+b
= a^3.x + a^2.b + a.b + b
=8x + 21
Hence:
a = 2, b = 21/(2^2 + 2 + 1) - 9 years agoHelpfull: Yes(1) No(2)
- -1
after solving the eq.wil be
a3x2+2abx+(ab+b+b2)
equating each term with 0
then a+b=-1 - 9 years agoHelpfull: Yes(0) No(7)
- f(x)= ax + b
f( f(x) ) = x* a^2 + ab + b
f( f( f(x) ) ) = x* a^3 + b* a^2 + ab + b
comparing the last equation with 8x + 21, we get :-
a=2 and b=3. So, a+b=5 - 8 years agoHelpfull: Yes(0) No(0)
TCS Other Question