TCS
Company
Numerical Ability
Ratio and Proportion
.Rs19266 is distributed among a b c such that a gets 4/45 of what b and c get together and c gets 7/12 of what a and b gets together. Find c share a)7098 b)6084 c)4056 d)8112
Read Solution (Total 8)
-
- Let A's share is x and similarly for b & c, y& z
According to question
19266=x+y+z
& z=7/12 of (x+y)
So x+y = 12/7 of z
Putting value of x+y in 1st equation
19266=z+z(12/7)
On solving z=7098 - 9 years agoHelpfull: Yes(16) No(0)
- a+b+c = 19266
49(b+c)/45 = 19266
19(a+b)/12 = 19266
Hence:
a + 19266*(45/49) = 19266 = 1572.73
b = 19266*12/19 - a = 10595.27
Therefore:
c = 19266*45/49-b = 7098 - 9 years agoHelpfull: Yes(2) No(1)
- a = 4/45(b+c)
c= 7/12(a+b)
a+b+c = 19266 -----eq1
Now,replace value of a+b by using c after multipy by 7/12 both side
7/12c +c = 19266*7/12
c = 19266*7/19
ans is 7098
- 9 years agoHelpfull: Yes(2) No(0)
- a+b+c=19266
&
12c=7(b+c)
12c=7*(19266-c)
19c=134862
c=7098 - 9 years agoHelpfull: Yes(2) No(0)
- ans a)7098
- 9 years agoHelpfull: Yes(1) No(0)
- c = (7/12)(a+b)
a+b=12c/7
a+b+c=19266
12c/7 + c = 19266
on solving we get c= 7098
thanks. - 9 years agoHelpfull: Yes(1) No(0)
- Let a+b+c=19266
a=4/45 of (b+c) ----- (1st equation)
c=7/12 of (a+b) ----- (2nd equation)
From 2nd Equation,
c=7/12 of (a+b)
(a+b)= 12/7 of c ----- (3rd equation)
Sub 3rd Equation in,
a+b+c=19266
12/7 c + c = 19266
12c+7c = 19266 * 7
19c=134862
c=7098 (Answer) - 9 years agoHelpfull: Yes(1) No(0)
- a=4/45(b+c) ........1
c=7/12(a+b)
or, (a+b)=12/7c..........2
Also a+b+c=19266
From 2, 12/7c+c=19266
c=19266*7/19=7098 - 9 years agoHelpfull: Yes(0) No(0)
TCS Other Question