TCS
Company
Numerical Ability
Permutation and Combination
1, 2, 3 and 4 can form 256 different four digit numbers. If digits repeated, two of them are 1111 and 1113. Then find the sum of 256 numbers.
a)711040 b)711000 c)711038 d)711042
Read Solution (Total 6)
-
- s=n/2(a+L)
s= 256/2(1111+4444)
s=711040 - 7 years agoHelpfull: Yes(49) No(7)
- 4^4=256 ways
(1+2+3+4)/4=5/2
256 *5/2*(1000+100+10+1)=711040 - 7 years agoHelpfull: Yes(14) No(1)
- As each digit of four digit number (abcd) can take 4 options (1, 2, 3, 4) total there can be 4^4 numbers.
Obviously each digit (a, b, c, and d) will take the value of 1, 2, 3, 4 equal number of times, so each digit will take the value of 1, 2, 3, 4 - 444=43=64444=43=64 times: units digit will take the values of 1, 2, 3, 4 - 64 times and the same with tens, hundreds, thousands digits.
So the sum would be 64*(1+2+3+4)+64*10*(1+2+3+4)+64*100*(1+2+3+4)+64*1000*(1+2+3+4)=64*10*(1+10+100+1000)=711040.
Hope it helps. - 7 years agoHelpfull: Yes(12) No(11)
- Sn = n/2 (a+L)
=256/2 (1111+4444)
=711042 - 7 years agoHelpfull: Yes(10) No(1)
- (N)^(n-1)*(sumofdigits)*(111....ntimes)
- 6 years agoHelpfull: Yes(3) No(0)
- (N)^(n-1)*(sumofdigits)*(111....ntimes)
711040 - 5 years agoHelpfull: Yes(0) No(0)
TCS Other Question