Elitmus
Exam
Numerical Ability
Number System
if a base 1=139/3, a base 2= -19 and a base k= a base k-1 - a base k-2, then what will be the 62th term in the series? (k, k-1, k-2 are in base)
139/3
-19
-196/3
-19-139/3(-19-196/3)
Read Solution (Total 2)
-
- a 1=139/3, a 2=-19, a 3=a 2-a 1=-19-139/3=-196/3, a 4=a 3-a 2=-196/3-(-19)=-139/3, a 5=a 4-a 3=-139/3-(-196/3)=57/3, a 6=a 5-a 4=57/3-(-139/3)=196/3, a 7=a 6-a 5=196/3-57/3=139/3=a 1, a 8=a 7-a 6=139/3-196/3=-57/3=-19=a 2 The series repeats after every 6 Numbers. Thus 62th term=6*10+2=2nd number= -19
- 7 years agoHelpfull: Yes(13) No(3)
- Let B as base.
+aB62
aB61-aB60
aB60-aB59-aB60
-aB59
-(aB58-aB57)
-(aB57-aB56-aB57)
+aB56
and so on..
+62 -59 +56 -53.....
For even value +ve
For odd value -ve
Then
Tn= 62+(n-1)(-3)
Tn=59-3n
For 3n - 6 years agoHelpfull: Yes(0) No(2)
Elitmus Other Question