TCS
Company
Numerical Ability
Age Problem
a,b,c are positive numbers such that a+b+ab= 8, b+c+bc=15 and c+a+ca = 35
What is the value of a+b+c+abc?
Read Solution (Total 3)
-
- add 1 on both sides to all the equations and take common elements
now the equations become
(a+1)(b+1)=9
(b+1)(c+1)=16
(c+1)(a+1)=36
solve the equations for a , b, c
so we get
a=3.5 b=1 and c=7
so the value of a+b+c+abc= 36 - 6 years agoHelpfull: Yes(19) No(9)
- GIVEN:-
a + b + ab = 8
b + a(1 + b) = 8
a = {8 - b}/{1 + b}}-------( 1 )
b + c + bc = 15
b + c(1 + b) = 15
c = {15 - b}/{1 + b}} ------( 2 )
a + c + ac = 35
{8 - b}/{1 + b} + {15 - b}/{1 + b} +{8 - b}/{1 + b}*{15 - b}/{1 + b} = 35
From----------( 1 ) &-----------( 2 )
{8 - b + 15 - b}/{1 + b} + {120 - 8b - 15b + b^2}/{(1 + b)^2} = 35
{(23 - 2b)(1 + b) + (120 - 23b + b^2) = 35(1 + b)^2}
{23 + 23b - 2b - 2b^2 + 120 - 23b + b^2 = 35 + 35b^2 + 70b}
{143 - 35 - 2b - b^2 = 35b^2 + 70b}
{108 - 72b - 36b^2 = 0}
{b^2 + 2b - 3 = 0}
{b^2 + 3b - b - 3 = 0}
{b(b + 3) - 1(b + 3)}
{(b + 3)(b - 1)}
so, b = 1 , b = -3[neglect]
because a , b , c ,are positive,
now,
from----------( 1 )
a = (8 - b)(1 + b)
a = (8 - 1)(1 + 1)
a = 7/2
from-----------( 2 )
c = (15 - b)(1 + b)
c = (15 - 1)(1 + 1)
c = 14/2
c = 7
thus, the value of "a + b + c + abc" is
7/2 + 1 + 7 + (7 * 7/2 * 1)
{(7 + 2 + 14 )/2 + 49/2}
(23/2 + 49/2)
(23 + 49)/2
72/2
36
HENCE, the value of (a + b + c + abc) = 36 - 6 years agoHelpfull: Yes(6) No(4)
- a-b=25.9
a=6b
Sub value of a in 1st eqn
b=5.18
a=30.08
a+b=38.26 - 5 years agoHelpfull: Yes(2) No(2)
TCS Other Question