Gate
Exam
let b be a positive integer and a=b^2-b. if b^3=4,then a^2-a is divisible by
a. 15
b. 20
c. 24
d. not
Read Solution (Total 5)
-
- not
a^2-a=b^4-2b^3+b^2-b^2+b
b^4-8+b
4b-8+b
5b-8
b is +ve integer substiute any +ve integer we dont get any number divisible by above answers
- 11 years agoHelpfull: Yes(1) No(2)
- c)
a^2-a=b^4-2b^3+b^2-b^2+b
b^4-8+b
4b-8+b
5b-8
substitute b=40
and 192 is divisible by 24 - 11 years agoHelpfull: Yes(0) No(4)
- option d is correct
- 11 years agoHelpfull: Yes(0) No(1)
- d)
a^2-a=b^4-2b^3+b^2-b^2+b
b^4-8+b
4b-8+b
5b-8
for different +ve values of b we get different answers which are not linked - 11 years agoHelpfull: Yes(0) No(0)
- value of b is 64 n this no. r not diisible by any of answer
- 11 years agoHelpfull: Yes(0) No(0)
Gate Other Question