Elitmus
Exam
IF LOG2,LOG(2^X+1),LOG(2^X+3) ARE IN A.P. THEN WHAT IS THE VALUE OF X
Read Solution (Total 8)
-
- (2^x+1)^2=2(2^x+3)
>2^2x+1=6
>2^2x=5
>x=0.5 log5/log2 - 11 years agoHelpfull: Yes(33) No(2)
- log(2^x+1)-log(2)=log(2^x+3)-log(2^x+1)
gives x=2 - 11 years agoHelpfull: Yes(20) No(15)
- If it is 2^(x+1) and 2^(x+3),then x=2 is the solution.
And if it is 2^x + 1 and 2^x + 3, then the solution is x=log5/log4. - 11 years agoHelpfull: Yes(7) No(3)
- answer shall be (log 5)/2*(log 2)
- 11 years agoHelpfull: Yes(1) No(0)
- 2log2=log(2^x+1)+log(2^x+3)
log(2^2)=log((2^x+1)(2^x+3))
2^2 = 2^(X+1+X+3)
2=2x+4
x=-1 - 11 years agoHelpfull: Yes(0) No(5)
- log .5 / log 2
- 11 years agoHelpfull: Yes(0) No(1)
- please anyone explain clearly i am not getting
- 11 years agoHelpfull: Yes(0) No(1)
- log (2^ x+1) - log 2= log (2^x+3) - log (2^ x+1)
apply log rules
(2^ x+1)/2 = (2^x+3)/(2^x+1)
2^2x+2 = 2^x+4
2x+2 = x+4
x=2 - 9 years agoHelpfull: Yes(0) No(0)
Elitmus Other Question