Elitmus
Exam
Numerical Ability
Arithmetic
How many factors of the number 2^5*3^4*5^2 are divisible by 2?
Read Solution (Total 5)
-
- total no. of factors= (5+1)(4+1)(2+1)= 90
no.of odd factors= (4+1)(2+1)= 15
so, no. of even factors= 90-15=75 - 11 years agoHelpfull: Yes(26) No(0)
- 75 is the answer,
(32*81*25)/2 is 2^4*3^4*5^2..so total no.of factors are (4+1)*(4+1)*(2+1)=75 - 11 years agoHelpfull: Yes(7) No(0)
- for the given number the required factors are
with atleast one 2 and remaining any thing from the given expression
2 : 1 combination
2*(_) 3 or 5 : 2 combinations
2*(_*_) 3*3 or 3*5 or 5*5: 3combs
2*(_*_*_) 3*3*3 or 3*3*5 or 3*5*5 :3 combs
2*(_*_*_*_) 3*3*3*3 or 3*3*3*5 or 3*3*5*5 :3combs
2*(_*_*_*_*_) 3*3*3*3*5 or 3*3*3*5*5 : 2 combs
2*(_*_*_*_*_*_) 3*3*3*3*5*5 : 1comb
total 15 combs for 2
repeating same for 2^2 2^3 2^4 2^5 we get
15*5=75 factors
- 11 years agoHelpfull: Yes(5) No(0)
- ans) would be 19
12 = (2^2)*3
(2^2)*3 this should be multiple of the no.
remaining is 2^3*3^3*5^2
3*3*2=18
total would be 18+1=19 - 11 years agoHelpfull: Yes(0) No(8)
- fcrf jqdfghmmsdfhjkldfgh ryuol;'
ghjkl. 6yu8i9 yujkl;' - 11 years agoHelpfull: Yes(0) No(0)
Elitmus Other Question