TCS
Company
(11^2 + 12^2 + 13^2 + ... + 20^2) = ?
Read Solution (Total 7)
-
- The sum of squares of first n natural numbers is:
(n*(n+1)*(2n+1))/6
Thus find out the sum of squares of first 20 natural numbers(1-20) i.e 2870
and now the sum squares of first 10 natural numbers(1-10) is : 385
and the difference between these two will give you the sum of (11^2 + 12^2 + 13^2 + ... + 20^2) which is equal to 2485 - 11 years agoHelpfull: Yes(45) No(0)
- Okay So here we go:
Re-write this as
(10+1)^2+(10+2)^2+(10+3)^2...+(10+10)^2
This would give us:
10*10^2 + (1^2+2^2+3^2+..+10^2) + (20+40+60+..200)
So now you get:
1000+Sum of square 10 natural no.+ Sum of an A.P for 10 terms
Answer:2485 - 11 years agoHelpfull: Yes(12) No(4)
- (11^2 + 12^2 + 13^2 + ... + 20^2) = (1^2+2^2+.............20^2)-(1^2+2^2+.........10^2)
{(20*21*41)/6-(10*11*12)/6}=(2870-385)=2485
- 11 years agoHelpfull: Yes(6) No(2)
- first of all we should be clear of square numbers..
11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256 17^2=289 18^2=324 19^2=361 20^=400
121+144+169+196+225+256+289+324+361+400=2485
this is easy to find square of numbers: for eg: xy^2= you must first square the ending digit y and if it comes as double digit number then we must add that to+ xy+y
eg: 14^2
4*4=16
hence keep that 6 as it is
now 14+4+1=19 hence the answer is 196
- 11 years agoHelpfull: Yes(2) No(4)
- 121+144+169+196+225+256+289+324+361{as i hav learnt da squares}
=2085{added horizontally rather dan vertically writing inorder to save time} - 11 years agoHelpfull: Yes(0) No(15)
- (10+1)^2+(10+2)^2+(10+3)^2+....+(10+10)^2
10^2+1^2+2*10*1+10^2+2^2+2*10*2+....+10^2+10^2+2*10*10
(10^2*10)+(1^2+2^2+3^2+...10^2)+2*10*(1+2+3+...+10)
sum of n natural no=(n(n+1))/2
sum of squares of n natural nos=n(n+1)(2n+1)/6
here n=10
1000+385+55=1440 - 11 years agoHelpfull: Yes(0) No(2)
- value=2485
- 11 years agoHelpfull: Yes(0) No(0)
TCS Other Question