TCS
Company
Logical Reasoning
Decision Making and Problem Solving
if f(x)=ax+b;
and f(f(f(x)))=8x+21;
then a+b=?
Read Solution (Total 4)
-
- f(x)= ax+b
f(f(x))=a(ax+b)+b
f(f(f(x)))=a[a(ax+b)+b]+b = a^3x + a^2b + ab + b = 8x + 21
on comparing
a^3x = 8x and a^2b + ab +b =21
we get a=2
then substituting value of a in a^2 + ab +b = 21
we get 7b = 21
b = 3
so, a+b=5
- 11 years agoHelpfull: Yes(20) No(0)
- f(f(f(x)))=f(f(ax+b))
=f(ax^2+ab+b)=(a^3x+a^2b+ab+b)=8x+21
so, a^3x=8x therefore a=2
and 4b+2b+b=21 so b=3
2+3=5 - 11 years agoHelpfull: Yes(1) No(0)
- dzggddgdzgdg
- 7 years agoHelpfull: Yes(1) No(1)
- f(f(f(x)))=f(f(ax+b))
=f(ax^2+ab+b)=(a^3x+a^2b+ab+b)=8x+21
so, a^3x=8x therefore a=2
and 4b+2b+b=21 so b=3
2+3=5 - 7 years agoHelpfull: Yes(0) No(0)
TCS Other Question