TCS
Company
For which of the following n is the number 274 + 22058 + 22n a perfect square?
option
(a) 2012
(b) 2100
(c) 2011
(d) 2020
Read Solution (Total 6)
-
- 2^74 +2^2058+2^2n = K^2
2^74 +2^2058+2^2n = (2^37)^2+2^2058+(2^n)^2
We try to write this expression as (a+b)^2=a^2+2ab+b^2
Now a = 2^37, 2ab = 2^2058 and b = 2^n
Substituting the value of a in 2ab, we get b = 2020
- 11 years agoHelpfull: Yes(10) No(13)
- This can be simplified as
(2^37)^2+ 2*(2^37)*2^n + (2^2n)
So 38+n=2058
=> n=2020. - 11 years agoHelpfull: Yes(5) No(0)
- d) 2020
2^74 +2^2058+2^2n = K2
2^74 +2^2058+2^2n = (237)2+22058+(2n)2
We try to write this expression as (a+b)2=a2+2ab+b2
Now a = 237, 2ab = 22058 and b = 2n
Substituting the value of a in 2ab, we get b = 2020
- 11 years agoHelpfull: Yes(1) No(5)
- hw u got 237?
- 11 years agoHelpfull: Yes(0) No(2)
- 2^74+2^2058+2^2n
=(2^37)^2+2*(2^37)*(2^2020)+(2^2020)^2 /*since (37+1=38 & 2058-38=2020)*/
=(2^37+2^2020)^2
ans=2020 - 11 years agoHelpfull: Yes(0) No(0)
- a2+b2+2ab
a=2^37
b=2^n
substitute in 2ab
2^1*2^37*2^n=2058
38+n=2058
n=2058-38
ans=2020 - 11 years agoHelpfull: Yes(0) No(0)
TCS Other Question