TCS
Company
Logical Reasoning
Coding Decoding
Find the last 3 digit of 2988^687
Read Solution (Total 12)
-
- (2988%1000)^687
988^687%1000
(988^684)*(988^3)
(988%1000)^3
(976144%1000)*988
(144*988)%1000
142272%1000
272
ans=272 - 11 years agoHelpfull: Yes(12) No(18)
- dividing a no. by 1000,remainder is the last three digit of number
2988^687/1000
=(3*1000-12)^687/1000
=(-12)^687/1000
={(-12)^3}^229/1000
=(-1728)^229/1000
={(-1728)^2}^114*(-1728)/1000
=(2985984)^114*(-1728)/1000
=(984)^114*(-1728)/1000
=(-16)^114*(-1728)/1000
={(-16)^3}^38*(-1728)/1000
=(-4096)^38*(-1728)/1000
=(-96)^38*(-1728)/1000
=(9216)^19*(-728)/1000
=(216)^19*272/1000
=(46656)^9*216*272/1000
=(656^9)*58752/1000
=(656^3)^3*752/1000 (consider last 3 or 4 digit of product)
=(416)^3*752/1000
=296*752/1000
=592/1000
=rem(592) - 11 years agoHelpfull: Yes(10) No(1)
- 988^2=976144%1000=144
988^4=144^2%1000=736
988^8=736^2%1000=696
988^16=696^2%1000=416
988^32=416^2%1000=056
988^64=056^2%1000=136
988^128=136^2%1000=496
988^256=496^2%1000=016
988^512=016^2%1000=256
988^687=988^512.988^128.988^32.988^8.988^4.988^2.988
988^687=256.496.56.696.736.144.988
988^687=592
i think 592 is answer it's correct or not ?
- 11 years agoHelpfull: Yes(6) No(6)
- (..8)^(2)=...4 ie. a num ending with 8 raised to the power of 2 gives a num ending with 4 (since 8^2 is 64).similarly 8^3=512..ends with 2.
8^4=4096 ends with 6..
8^5=32768..again this series repeats...the cycle is 4...
hence 687%4=3
8 6 2..the ans is 2 - 11 years agoHelpfull: Yes(3) No(11)
- 142272%1000
272
ans=272 - 11 years agoHelpfull: Yes(2) No(1)
- koi k pass simple explanation nahi hai kyaa...?
- 11 years agoHelpfull: Yes(2) No(0)
- this is for last digit alone
- 11 years agoHelpfull: Yes(1) No(4)
- 272 is the answer
- 11 years agoHelpfull: Yes(1) No(7)
- 592 is the correct answer
- 11 years agoHelpfull: Yes(1) No(1)
- last to digit is 88
88^687=== 687%4==3 is remainder
88^3===472 answer - 11 years agoHelpfull: Yes(0) No(0)
- 687/4=remainder 3,
for remainder 3 base unit=(base unit)^3
i.e. 8^3=512 - 11 years agoHelpfull: Yes(0) No(0)
- the formula for this problem is
(x+1)^n = 1+nx+n(n-1)*x^2 therefore the ans will be
(2987+1)^687= 1 + 069 + 641*169
= 070 + 329
= 399 answer - 10 years agoHelpfull: Yes(0) No(0)
TCS Other Question