TCS
Company
Logical Reasoning
Mathematical Reasoning
Sum of the digits in the equation (16^100)*(125^135) is
Read Solution (Total 11)
-
- it can be also written as
((2^400)*(5^405))
((2^400)*(5^400)*(5^5))
((2*5)^400)*(5^5))
((10^400)*(5^5))
as we know that 10^n= 10000......
so ((1000....)*(3125))
we get 312500000.....
ans=3+1+2+5+0+0+0..... =11
- 11 years agoHelpfull: Yes(156) No(3)
- 2^400*5^405
10^400*5^5
10^4 has all digits 0 except one 1
5^5 is 3125
sum of digits is 12 i.e.1+3+1+2+5 - 11 years agoHelpfull: Yes(6) No(25)
- =16^100 * 125^135 => (2^4)^100 * (5^3)^135 => 2^400 * 5^405 = 2^400 * 5^400 * 5^5
= (2*5)^400 *3125
=10^400 * 3125
sum of 10^400= 1+0 + 0+ 0+ ...... = 1
sum of 3125 = 11
therefore= 1 * 11 = 11
therefore = 1 + 1= 2
ans is 2
- 9 years agoHelpfull: Yes(3) No(1)
- 1+6+1+0+0+1++2+5+1+3+5=25
- 11 years agoHelpfull: Yes(1) No(9)
- Here options are 2 5 3 8. there is no 11 in the options
- 11 years agoHelpfull: Yes(1) No(0)
- 1+6=7*100=700
1+2+5=8*135=1080
so the sum is 1780 - 11 years agoHelpfull: Yes(0) No(34)
- (2^400)*5^405 =(10^400)*5^5
3125*10^400 =four digits + 400 digits =totally 404 digits is the answer - 11 years agoHelpfull: Yes(0) No(6)
- its 1+3+1+2+5=12 is the answer
- 11 years agoHelpfull: Yes(0) No(0)
- Sum of digits is 11. Ans.
- 11 years agoHelpfull: Yes(0) No(0)
- ans is 2
- 9 years agoHelpfull: Yes(0) No(1)
- 11 is the answer
- 9 years agoHelpfull: Yes(0) No(0)
TCS Other Question