TCS
Company
12341234..........400 digits when divided by 909 leaves reminder?
Read Solution (Total 5)
-
- 1234124341234.......upto 400 digits = 1234(10^0 + 10^4 + 10^8 + ... 10^396)
1234(10^0 + 10^4 + 10^8 + ... 10^396) mod 909
= 123400 mod 909 = 685 (As 10^4k mod 909 is always 1) - 11 years agoHelpfull: Yes(9) No(2)
- Ans 325.
last 4 digit is 1234 which when divide by 909 leave remainder 325......correct me if i wrong - 11 years agoHelpfull: Yes(3) No(13)
- N=12341234…upto 400digits =1234[10^396+10^392+10^298+...+10^0] =1234[(10^4)^99+(10^4)^98+(10^4)^97+....+(10^4)^0] =A*B(let) So we can write N%909=(A*B)%909
=1234%909*[1+1+...100 terms]%909[As10^4=1(mod909)]
=32500%909=685[Here % implies Mod which determines the remainder] - 11 years agoHelpfull: Yes(2) No(2)
- (1234)group of 4 digits whose sum of digits is 10, when repeated 100 times makes overall 400 digits like 12341234.....1234.
check rem. for 9 which is = 1
rem. for 101 =91
ans.92 - 11 years agoHelpfull: Yes(2) No(2)
- 685 will the remainder !!!
- 11 years agoHelpfull: Yes(0) No(0)
TCS Other Question