TCS
Company
Numerical Ability
Number System
123^123! what is the last 2 digits?
Read Solution (Total 7)
-
- Last two digits are 01
It can be find out using binomial theorem :-
123^(123)! = ((123)^2)^(123!)/2
123^2 = 15129
last two digits are 29
So we can write it as:-
((123)^2)^(123!)/2 = (-1+30)^(123!)/2
Now (123!)/2, which is a very large number and will have many trailing zeroes
we can expand the binomial expression as :-
nC0 * a^n * b^0 + nC1 * a^(n-1)*b^1 + nC1 * a^(n-1)*b^1 .... ....(no need to go further for this question)
here n = (123!)/2 , a= -1 b = 30
Putting values:-
(123!)/2 C0 * (-1)^(123!)/2 30^0 + (123!)/2 C1 * (-1)^((123!)/2 -1) * 30^1
| | |
| | |
| | |
| | |
v v v
last digit: 1 + last digit: 000000 + last digit: 000000
So final addition will be like .....000001
Last two digit 01 Ans
jisko samajh nhi aya wo call krlo muje 09981241341, smjha dunga :P
- 11 years agoHelpfull: Yes(9) No(3)
- ans 67
123^123 convert it such that its last digit is 1
123^120*123^3=(123^4)^30*123^3=(41)^30(last 2 digits)*123^3
41^30 last 2 digit= 4*0=0 & 1 i.e. 01 *123^3=67 ans
- 11 years agoHelpfull: Yes(6) No(5)
- last two digits: 01.
explanation : 1. check the cyclicity of 123 that is 4
123^123! = (123^4)^xyz000000....
therefore 01 - 11 years agoHelpfull: Yes(5) No(8)
- (123^4)^xy000.. nw apply cyclicity rule answer will be 01
- 11 years agoHelpfull: Yes(1) No(2)
- ans is 67...
- 11 years agoHelpfull: Yes(0) No(5)
- since last 2 digits are needed so:
123^123! mod 100
Carmichael Number for 100 is 20
Since 20 divides 123!, so answer is to be unity
Hence 01 - 11 years agoHelpfull: Yes(0) No(0)
- 123^..........0000...28 zeroe's
==01 as last two digits !!! - 11 years agoHelpfull: Yes(0) No(0)
TCS Other Question