TCS
Company
today star questions
1. 2^74+2^2048+2^2n is a perfect square what is
the largest possible number n..
Read Solution (Total 6)
-
- 2^74+2^2048+2^2n=a^2+2ab+b^2
therefore,a=2^37,b=2^n nd 2ab=2^2048
2^38*2^n=2^2048
38+n=2048
n=2010 - 11 years agoHelpfull: Yes(55) No(1)
- since, (a+b)^2=a^2+b^2+2ab
2^74+2^2n+2^2048=(2^37)^2+(2^n)^2+2^2048
2*(2^37)*(2^n)=2^2048
2^(1+37+n)=2^2048
since base are same ,equating powers,we get
1+37+n=2048
38+n=2048
n=2010 - 11 years agoHelpfull: Yes(19) No(0)
- 2010 on solvg it is in the form f (a+b)^2
- 11 years agoHelpfull: Yes(1) No(0)
- n=2010
as a^2+(2*a*b)+b^2
so 2^37+2*2^37*2^n+2^n
now 2048-(1+37)=2010 - 11 years agoHelpfull: Yes(0) No(0)
- (2^37)^2 + 2*2^37*2^n +(2^n)^2= a^2 +2ab +b^2
2*2^37*2^n=2ab
2^38+n=2^2048
n=2010ans
- 11 years agoHelpfull: Yes(0) No(1)
- (2^37)^2 + (2^n)^2+ 2^2048
let a= 2^37
b= 2^n
2ab= 2^2048
2*2^37*2^n=2^2048
2^(1+37+n)=2^2048
38+n=2048
n=2010 - 11 years agoHelpfull: Yes(0) No(0)
TCS Other Question