Capgemini
Company
Numerical Ability
Geometry
Q 52. A triangle has sides of lengths 10, 24 and n, where n is a positive n is a positive integer. The number of values of n for which this triangle has three acute angles is
A. 1
B. 2
C. 3
D. 4
Read Solution (Total 12)
-
- triangle with acute angle:a^2+b^2>c^2
i)let a=10,b=n,c=24
so 10^2+n^2>24^2
n^2>(24^2-10^2)
n^2>576-100
n^2>476
ii)let a=10,b=24,c=n
10^2+24^2>n^2
100+576>n^2
676>n^2
so from i and ii
476>n^2>676 hence root476>n>root676
ans=22,23,24,25
sol:4
- 11 years agoHelpfull: Yes(24) No(2)
- n=22,23,24,25
ans (d) - 11 years agoHelpfull: Yes(12) No(3)
- sorry both time answer printed wrong
ans is (D)
for acute angle triangle,if c is greatest side then, a^2 + b^2 > c^2
for 10,24,n
if n is greatest,then
10^2+24^2>n^2
or 26^2>n^2
or 26>n eqn(1)
if 24 is greatest
10^2+n^2>24^2
n^2>476
n>21.9 eqn(2)
cobining eqn 1&2
21.9 - 11 years agoHelpfull: Yes(7) No(4)
- for acute angle triangle,if c is greatest side then, a^2 + b^2 > c^2
for 10,24,n
if n is greatest,then
10^2+24^2>n^2
or 26^2>n^2
or 26>n
or n24^2
or n^2>476
or n>21.9 ----(2)
combining (1)&(2)we get,
21.9 - 11 years agoHelpfull: Yes(4) No(3)
- i am correct but prints wrong
from last answer
n21.9
combining two
21.9 - 11 years agoHelpfull: Yes(3) No(0)
- 1 coz its nt a right triangle
- 11 years agoHelpfull: Yes(3) No(1)
- triangle with acute angle: [a^2+b^2>c^2]
i)let a=10,b=n,c=24
so [10^2+n^2>24^2]
[n^2>(24^2-10^2)]
[n^2>576-100]
[n^2>476]
ii)let a=10,b=24,c=n
[10^2+24^2>n^2]
[100+576>n^2]
[676>n^2]
so from i and ii
[476>n^2>676] hence [sqrt(476)>n>sqrt(676)]
ans=22,23,24,25
sol:4 - 9 years agoHelpfull: Yes(3) No(0)
- tan^-1(2.4)=1.17
so (A)1
not sure - 11 years agoHelpfull: Yes(2) No(7)
- For a triangle to be acute the square of each side must be less than the sum of the squares of the other two sides. In this case it is required that
242−102 - 4 years agoHelpfull: Yes(2) No(0)
for acute angle triangle,if c is greatest side then, a^2 + b^2 > c^2
for 10,24,n
if n is greatest,then
10^2+24^2>n^2
or 26^2>n^2
or 26>n
or n24^2
or n^2>476
or n>21.9 -----(2)
combining eqn 1 & 2
21.9- 11 years agoHelpfull: Yes(1) No(1)
- n+10>24.
n^2+10^2 - 11 years agoHelpfull: Yes(0) No(2)
- c^2>24^2-10^2
c^2>476(but 14 - 10 years agoHelpfull: Yes(0) No(0)
Capgemini Other Question