TCS
Company
Numerical Ability
Algebra
If 5x+12y=60 then find the minimum value of sqrt(x^2+y^2)?
Read Solution (Total 7)
-
- put x=0.we get y=5
so,sqrt(0^2+5^2)=5
and
if y=0 than x=12
thn sqrt(12^2+0^2)=12
so the minimum value is 5 is the ans. - 11 years agoHelpfull: Yes(35) No(9)
- 5x+12y=60
0r (5/13)x + (12/13)y = 60/13
let x=rcosA, y=rsinA so that r=sqrt(x^2 +y^2)
or r(cosA*cosB+sinA.sinB)=60/13 (if 5/13=cosB then sinB=12/13)
or r*cos(A-B)=60/13
or r=(60/13)/cos(A-B)
FOR r=sqrt(x^2 +y^2) to be minm cos(A-B)maxm=1
so minm value of sqrt(x^2+y^2)=60/13
- 11 years agoHelpfull: Yes(10) No(6)
- ANSWER is 4.60
Put x=1 then y=4.5 now value of (x^2+y^2) is (1^2+4.5^2)=(1+20.25)=21.25
now Sqrt(21.25)=4.60 which is minimum among all the values.
So ANSWER is 4.60 - 11 years agoHelpfull: Yes(9) No(4)
- 5*0+12*5=60
ans:5 - 11 years agoHelpfull: Yes(4) No(3)
- (5x+12y)^2+(12x−5y)^2=(13^2)*(x^2+y^2).
Since 5x+12y is given, we minimize x^2+y^2 by minimizing (12x−5y)^2. The minimum value of this is 0. It follows that the minimum value of 60/13. - 11 years agoHelpfull: Yes(3) No(3)
- 5x+12y=60
y=5 ans 25
- 11 years agoHelpfull: Yes(1) No(4)
- x=0,y=5
ans is5 - 11 years agoHelpfull: Yes(0) No(0)
TCS Other Question