TCS
Company
Quadratic Equations
Q. If a+b=3, a^2+b^2=7 find a^4+b^4=?
Read Solution (Total 20)
-
- (1) (a+b)^2=a^2+b^2+2ab
(3)^2 =(7) +2ab
2ab =2
a =1/b
(2) (a^2+b^2)^2 =a^4+b^4 +2*a^2*b^2
(7)^2 =a^4+b^4 +2*a^2*(1/a^2) (cause:a =1/b )
49 =a^4+b^4 +2
a^4+b^4 =47
so answer is 47. - 11 years agoHelpfull: Yes(20) No(0)
- 47... square the second one we get a^4+b^4+2a^2b^2=49...(1) similarly square the fist one and we get a^2+b^2+2ab=9 from this we can find out ab value.. and sub this value in equation (1) we get the ans..
- 11 years agoHelpfull: Yes(3) No(0)
- Ans: 47
a+b=3
squaring on both the sides
a^2+b^2+2ab=9
7+2ab=9 (given a^2+b^2=7)
ab=1 ->equation 1
a^2+b^2=7 (given)
squaring on both the sides,
a^4+b^4+2a^2b^2=49
a^4+b^4+2=49 (since, ab=1 (from equation 1)-> a^2b^2=1)
a^4+b^4=47 - 11 years agoHelpfull: Yes(2) No(0)
- (a+b)^2=a^2+b^2+2ab
(3)^2 =(7) +2ab
2ab =2
a =1/b
(a^2+b^2)^2 =a^4+b^4 +2*a^2*b^2
(7)^2 =a^4+b^4 +2*a^2*(1/a^2) (cause:a =1/b )
49 =a^4+b^4 +2
a^4+b^4 =47
so answer is 47. - 11 years agoHelpfull: Yes(2) No(0)
- a^2+b^2=(a+b)^2-2ab
=>7=3^2-2ab
=>2ab=2
=>ab=1.
Similarly a^4+b^4= (a^2+b^2)^2-2(a^2*b^2)
=>a^4+b^4=7^2-2(1^2)
=>a^4+b^4=47
So answer is 47. - 11 years agoHelpfull: Yes(2) No(0)
- Answer: 47
a+b=3, a^2+b^2=7 so, 2ab=(a+b)^2-a^2+b^2
=9-7
=2
=>ab=2/2=1
(a^4+b^4)=(a^2+b^2)^2-2*a^2*b^2
=49-2*1
=47
- 11 years agoHelpfull: Yes(1) No(0)
- (a+b)^2 = a^2+b^2+2ab
=> 9=7+2ab
=> ab=1
(a^2+b^2)^2=a^4+a^4+2a^2b^2
49=a^4+b^4+2*1
a^4+b^4=47 - 11 years agoHelpfull: Yes(1) No(1)
- ans :47
(a+b)^4=a^4+b^4+2*a^2*b^2+2*(a^2+b^2)*(2*a*b) - 11 years agoHelpfull: Yes(0) No(1)
- (a+b)^2=a^2+b^2+2ab
9=7+2ab,ab=1,b=1/a
(a^2+b^2)^2=a^4+b^4+2a^2b^2
49=a^4+b^4+2a^2*1/a^2=a^4+b^4+2
49-2=a^4+b^4
so a^4+b^4=47 - 11 years agoHelpfull: Yes(0) No(0)
- 2ab=(a+b)^2-(a^2+b^2)=9-7=2 then ab=1
a^4+b^4=(a^2+b^2)^2-2(ab)^2=47 - 11 years agoHelpfull: Yes(0) No(0)
- (a+b)^2=a^2+b^2+2ab
==> 2ab= 9-7
==> ab=1
if a^2=m, b^2=n
(m+n)^2=m^2+n^2+2mn
==> 7^2=m^2+n^2+2
==> a^4+b^4= 47 - 11 years agoHelpfull: Yes(0) No(0)
- 48
find a^4+b^4 from (a^2+b^2)^2.. - 11 years agoHelpfull: Yes(0) No(1)
- (a^2+b^2)^2=a^4+b^4+2*(ab)*(ab).......equ-(1)
ab=[(a+b)^2-(a^2+b^2)]/2
=>ab=[3^2-7]/2
=>ab=2/2=1
put in equ-(1)
=>(7)^2=a^4+b^4+2*(1)*(1)
=>49=a^4+b^4+2
=>a^4+b^4=49-2=47......Answer - 11 years agoHelpfull: Yes(0) No(0)
- A+B=3
(A+B)^2=9
2AB=2
AB=1
LET, A^2=X,B^2=Y
(X+Y)^2=49
A^4+B^4=47 - 11 years agoHelpfull: Yes(0) No(0)
- (a+b)^2=a^2+b^2+2ab
9=7+2ab
ab=1---(1)
(a^2+b^2)^2=a^4+b^4+2a^2b^2
49=a^4+b^4+2
a^4+b^4=47
- 11 years agoHelpfull: Yes(0) No(0)
- 49-2=47...
- 11 years agoHelpfull: Yes(0) No(0)
- (a^2+b^2)^2=a^4+b^4+2(ab)^2
49=a^4+b^4+2
a^4+b^4=47
ans 47 - 11 years agoHelpfull: Yes(0) No(0)
- (a+b)=3
(a+b)^2=9=a^2+b^2+2ab
ab=1
(a^2+b^2)(a^2+b^2)=a^4+b^4+2(ab)^2
a^4+b^4=47 - 11 years agoHelpfull: Yes(0) No(0)
- (a+b)=3--- (i) & a^2+b^2=7----(ii)
(a+b)^2=9
a^2+b^2+2ab=9 (sub (ii))
7+2ab=9
2ab=2
ab=1 ---- (iii)
squaring (i)
(a^2+b^2)^2=49
a^4+b^4+2a^2b^2=49
a^4+b^4+2(1)^2=49 (sub (iii))
a^4+b^4=47
Ans=47 - 11 years agoHelpfull: Yes(0) No(0)
- ans is 47.
=>a^2+b^2+2ab=(a+b)(a+b)
=>7+2ab=9 =>ab=1
=>(a^2+b^2)^2=a^4+b^4+2a^2b^2
=>49=a^4+b^4=2
=>a^4+b^4=47. - 11 years agoHelpfull: Yes(0) No(0)
TCS Other Question