gate
Numerical Ability
Sequence and Series
Q. Progression
10+84+734+.....= ?
Option
a)(9(9^n+1)/10)+1
b)(9(9^n-1)/8)+1
c)(9(9^n-1)/8)+n
d)(9(9^n-1)/8)+n^2
Read Solution (Total 8)
-
- 10+84+734+....
=(9+1)+(9^2+3)+(9^3+5)+...
=(9+9^2+9^3+...)+(1+3+5+7+...)
=9(9^n-1)/(9-1)+n^2 [sum of GP=a(r^n -1)/(r-1) & sum of first n odd no.=n^2]
=9(9^n-1)/8)+n^2
option(d) - 11 years agoHelpfull: Yes(12) No(1)
- ans is option (d) becoz put the value of n=1,2,3...
n=1,(9(9^1-1)/8)+1^2 = 9(8/8)+1 = 10
n=2,(9(9^2-1)/8)+2^2 = 9(80/8)+4 = 94 = 10+84
n=3,(9(9^3-1)/8)+3^2 = 9(728/8)+9 = 9*91 + 9 = 819+9 = 828=10+84+734
similarly..........
- 11 years agoHelpfull: Yes(3) No(0)
- ans is d
n=1
(9(9^1-1)/8)+1^2 = 9(8/8)+1 = 10
n=2
(9(9^2-1)/8)+2^2 = 9(80/8)+4 = 94 ( 10+84 )
n=3
(9(9^3-1)/8)+3^2 = 9(728/8)+9 = 9*91 + 9 = 819+9 = 828 (10+84+734)
so option d is correct - 11 years agoHelpfull: Yes(1) No(0)
- (9^1+9^2+9^3+...)+(1+3+5....)
(9(9^n-1)/8)+(1+(n-1)2)
(9(9^n-1)/8)+(2n-1) - 11 years agoHelpfull: Yes(0) No(0)
- 10+84+734+....
=(9+1)+(9^2+3)+(9^3+5)+...
=(9+9^2+9^3+...)+(1+3+5+9+...)
=9(9^n-1)/(9-1)+n^2 (sum of first n odd no.=n^2)
=9(9^n-1)/8)+n^2
option(d) - 11 years agoHelpfull: Yes(0) No(0)
- d is the answer
- 11 years agoHelpfull: Yes(0) No(0)
- by putting value we can check
n=1
we get 10 in only one option (d) so(d)is right ans. - 11 years agoHelpfull: Yes(0) No(0)
- apply the a.p. and g.p.
ans -d - 10 years agoHelpfull: Yes(0) No(0)
gate Other Question