Elitmus
Exam
Numerical Ability
Permutation and Combination
v,w,x,y,z are non negative integers each <11, then how many distinct combinations of (v,w,x,y,z) satisfy
v(11^4)+w(11^3)+x(11^2)+y(11)+z= 151001
Read Solution (Total 7)
-
- v(11^4)+w(11^3)+x(11^2)+y(11)+z= 151001
=> 11*( v*11^3 + w*11^2+ x*11 + y ) + z = 11*13727 + 4
=> ( v*11^3 + w*11^2+ x*11 + y )= 13727 & z = 4
=> 11*( v*11^2 + w*11 + x ) + y = 11*1247 + 10
=> ( v*11^2 + w*11 + x )= 1247 & y = 10
=> 11*( v*11 + w ) + x = 11*113 + 4
=> ( v*11 + w )= 113 & x = 4
=> ( v*11 + w ) = 11*10 + 3
=> v = 10 & w = 3
so, v=10, w=3, x=4, y=10 ,z=4
(v,w,x,y,z)=(10,3,4,10,4)
so, only one combination - 10 years agoHelpfull: Yes(85) No(0)
- options were>> 0,1,2 or 3
- 10 years agoHelpfull: Yes(3) No(0)
- Answer is 1
because there is one particular solution for this - 10 years agoHelpfull: Yes(3) No(1)
- ans is 0.
because when we solve we get v=10,w=3,x=4,y=10,z=4.
here all are not distinct.
- 10 years agoHelpfull: Yes(3) No(15)
- v(11^4)+w(11^3)+x(11^2)+y(11)+z= 151001=>
11*( v*11^3 + w*11^2+ x*11 + y ) + z = 11*13727 + 4
=> ( v*11^3 + w*11^2+ x*11 + y )= 13727 & z = 4
=> 11*( v*11^2 + w*11 + x ) + y = 11*1247 + 10
=> ( v*11^2 + w*11 + x )= 1247 & y = 10
=> 11*( v*11 + w ) + x = 11*113 + 4
=> ( v*11 + w )= 113 & x = 4
=> ( v*11 + w ) = 11*10 + 3
=> v = 10 & w = 3so, v=10, w=3, x=4, y=10 ,z=4(v,w,x,y,z)=(10,3,4,10,4) so, only one combination. - 10 years agoHelpfull: Yes(0) No(4)
- Rakesh z=5 in first line
- 10 years agoHelpfull: Yes(0) No(4)
- @Rakesh z can be any number of form 11n+4 ?
- 10 years agoHelpfull: Yes(0) No(1)
Elitmus Other Question