Gmate
Exam
General Ability
General Knowledge
Q. If u,v,w,x,y and z are non negative integer ,each less than 11,then how many distinct combination(u,v,x,y,z) satisfy v(11^4)+w(11^3)+x(11^2)+y(11)+z(1)=151001
Read Solution (Total 3)
-
- Only 1 distinct combination is possible.
It can be solved by finding corresponding number in base 11.
So here V= 10, W=3,X=4,Y=10,Z=4
If 10 is represeted as V, then no in base 11 is
V34V4 - 13 years agoHelpfull: Yes(9) No(5)
- Correct answer is : B
Explanation
11(11^3v+11^w+11x+y) + z = 11*13727 + 4 [hence; z = 4] because I=QN+R : (11*13727+4)
repeating the above procedure;
11(11^2v + 11w +x) + y =11*1247 + 10 [y = 10]
11(11v + w ) + x = 11*113 + 4 [x = 4]
11v + w = 11*10 + 3 [v=10 , w=3]
- 10 years agoHelpfull: Yes(3) No(1)
- z=151001%11=4
value=151001-4=150997
y(11)=150997%121=110
y=110/11=10
value=150997-11*10=150887
x(11^2)=150887%1331=484
x=484/121=4
value=150887-484=150403
w(11^3)=150403%(11^4)=3993
w=3993/1331=3
value=150403-3993=146410
v(11^4)=146410
v=146410/14641=10
one combination z=4,y=10,x=4,w=3,v=10 - 9 years agoHelpfull: Yes(0) No(0)
Gmate Other Question