Campus
Maths Puzzle
Numerical Ability
Quadratic Equations
If 1/x+x=5 and find out the value x^5+1/x^5=?
Read Solution (Total 5)
-
- x + 1/x = 5
first calculate (x + (1/x))^2
(x + (1/x))^2 = 5^2
x^2 + (1/x)^2 + 2 = 25
x^2 + 1/x^2 = 23 ---->(1)
Now calculate (x + (1/x))^3
(x + 1/x)^3 = 5^3
x^3 + y^3 +3x*1/x(x + 1/x) = 125
x^3 + y^3 + 15 = 125
x^3 + y^3 = 110 --->(2)
Multiply (1) & (2)
(x^2 + 1/x^2)(x^3 + 1/x^3) = 23 * 110
x^5 + 1/x + x + 1/x^5 = 2530
x^5 + 1/x^5 + 5 = 2350
x^5 + 1/x^5 = 2345
Ans : 2345 - 10 years agoHelpfull: Yes(6) No(3)
- I think that ans is 2525..... the procedure is right but when subtracting 2530 by 5 we get 2525..............
- 10 years agoHelpfull: Yes(4) No(0)
- Ya @Ahalya ... Its 2525...
- 10 years agoHelpfull: Yes(1) No(0)
- ans=100001
1/2x=5
10x=1
x=1/10
[x^5(1+1/x^5)]/x^5=1+100000=100001
- 10 years agoHelpfull: Yes(0) No(4)
- x^2 + 1/x^2 = (x+ 1/x)^2 - 2 = 5^2 - 2 = 23 -------(1)
x^3 + 1/x^3 = (x+ 1/x)^3 - 3*x*1/x*(x+ 1/x) = 5^3 - 3*5 = 110 -------(2)
multiplying (1)& (2)
=>(x^2+ 1/x^2)*(x^3+ 1/x^3) = 23*110
=> x^5 + 1/x + x + 1/x^5 = 2530
=> x^5 + 1/x^5 + (x+ 1/x)= 2530
=> x^5 + 1/x^5 + 5 = 2530
=> (x^5+ 1/x^5)= 2345
- 10 years agoHelpfull: Yes(0) No(3)
Campus Other Question
What is the next number of the following sequence
49, 7, 98, 16, 4, 48, 36, 6, 144, 25, 5, ?
Given m+1/m=5 find m^4+1/m^2/m^2-3m+1=?