Campus
Maths Puzzle
Numerical Ability
Quadratic Equations
Given m+1/m=5 find m^4+1/m^2/m^2-3m+1=?
Read Solution (Total 2)
-
- i think its
(m^4+ 1/m^2)/m^2-3m+1
=(m^4+ 1/m^2)/2m [m+ 1/m=5 => m^2-5m+1=0 => m^2-3m+1=2m ]
=(1/2)*(m^3 +1/m^3)
=(1/2)*[(m+ 1/m)^3 -3* m * 1/m *(m+ 1/m)]
=(1/2)*[5^3 - 3*5]
=(1/2)*110
=55
- 10 years agoHelpfull: Yes(3) No(1)
- (m+1/m)^2=5^2
m^2+1/m^2+2=25
m^2+1/m^2=23
m^4+1/m^2/m^2-3m+1==>(m^4+1/m^4)-3m+1
=>(m^2+1/m^2)^2-2-3m+1
=>(23)^2-2-3m+1
=>529-2-3m+1
m=176 - 10 years agoHelpfull: Yes(0) No(0)
Campus Other Question